Advertisement for orthosearch.org.uk
Results 1 - 20 of 40
Results per page:
Bone & Joint Open
Vol. 5, Issue 12 | Pages 1123 - 1129
20 Dec 2024
Manara JR Nixon M Tippett B Pretty W Collopy D Clark GW

Aims. Unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) have both been shown to be effective treatments for osteoarthritis (OA) of the knee. Many studies have compared the outcomes of the two treatments, but less so with the use of robotics, or individualized TKA alignment techniques. Functional alignment (FA) is a novel technique for performing a TKA and shares many principles with UKA. Our aim was to compare outcomes from a case-matched series of robotic-assisted UKAs and robotic-assisted TKAs performed using FA. Methods. From a prospectively collected database between April 2015 and December 2019, patients who underwent a robotic-assisted medial UKA (RA-UKA) were case-matched with patients who had undergone a FA robotic-assisted TKA (RA-TKA) during the same time period. Patients were matched for preoperative BMI, sex, age, and Forgotten Joint Score (FJS). A total of 101 matched pairs were eligible for final review. Postoperatively the groups were then compared for differences in patient-reported outcome measures (PROMs), range of motion (ROM), ability to ascend and descend stairs, and ability to kneel. Results. Both groups had significant improvements in mean FJS (65.1 points in the TKA group and 65.3 points in the UKA group) and mean Oxford Knee Score (OKS) (20 points in the TKA group and 18.2 in the UKA group) two years following surgery. The UKA group had superior outcomes at three months in the OKS and at one year in ROM (5°), ability to kneel (0.5 points on OKS question), and ascend (1.3 points on OKS question) and descend stairs (0.8 points on OKS question), but these were not greater than the minimal clinically important difference. There were no differences seen in FJS or OKS at one year postoperatively. There were no statistically significant differences between the groups at 24 months in all the variables assessed. Conclusion. FA-RATKA and RA-UKA are both successful treatments for medial compartmental knee arthritis in this study. The UKA group showed a quicker recovery, but this study demonstrated equivalent two-year outcomes in all outcomes measured including stair ascent and descent, and kneeling. Cite this article: Bone Jt Open 2024;5(12):1123–1129


Bone & Joint Open
Vol. 3, Issue 5 | Pages 441 - 447
23 May 2022
Mikkelsen M Wilson HA Gromov K Price AJ Troelsen A

Aims

Treatment of end-stage anteromedial osteoarthritis (AMOA) of the knee is commonly approached using one of two surgical strategies: medial unicompartmental knee arthroplasty (UKA) or total knee arthroplasty (TKA). In this study we aim to investigate if there is any difference in outcome for patients undergoing UKA or TKA, when treated by high-volume surgeons, in high-volume centres, using two different clinical guidelines. The two strategies are ‘UKA whenever possible’ vs TKA for all patients with AMOA.

Methods

A total of 501 consecutive AMOA patients (301 UKA) operated on between 2013 to 2016 in two high-volume centres were included. Centre One employed clinical guidelines for the treatment of AMOA allowing either UKA or TKA, but encouraged UKA wherever possible. Centre Two used clinical guidelines that treated all patients with a TKA, regardless of wear pattern. TKA patients were included if they had isolated AMOA on preoperative radiographs. Data were collected from both centres’ local databases. The primary outcome measure was change in Oxford Knee Score (OKS), and the proportion of patients achieving the patient-acceptable symptom state (PASS) at one-year follow-up. The data were 1:1 propensity score matched before regression models were used to investigate potential differences.


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1561 - 1570
1 Oct 2021
Blyth MJG Banger MS Doonan J Jones BG MacLean AD Rowe PJ

Aims

The aim of this study was to compare the clinical outcomes of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) during the first six weeks and at one year postoperatively.

Methods

A per protocol analysis of 76 patients, 43 of whom underwent TKA and 34 of whom underwent bi-UKA, was performed from a prospective, single-centre, randomized controlled trial. Diaries kept by the patients recorded pain, function, and the use of analgesics daily throughout the first week and weekly between the second and sixth weeks. Patient-reported outcome measures (PROMs) were compared preoperatively, and at three months and one year postoperatively. Data were also compared longitudinally and a subgroup analysis was conducted, stratified by preoperative PROM status.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 494 - 502
20 Jul 2022
Kwon HM Lee J Koh Y Park KK Kang K

Aims. A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes. Methods. ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions. Results. Anterior translation increased in ACL-deficient UKA cases compared with intact models. In contrast, posterior translation increased in PCL-deficient UKA cases compared with intact models. As the posterior tibial slope increased, anterior translation of ACL-deficient UKA increased significantly in the stance phase, and posterior translation of PCL-deficient UKA increased significantly in the swing phase. Furthermore, as the posterior tibial slope increased, contact stress on the other compartment increased in cruciate ligament-deficient UKAs compared with intact UKAs. Conclusion. Fixed-bearing medial UKA is a viable treatment option for patients with cruciate ligament deficiency, providing a less invasive procedure and allowing patient-specific kinematics to adjust posterior tibial slope. Patient selection is important, and while AP kinematics can be compensated for by posterior tibial slope adjustment, rotational stability is a prerequisite for this approach. ACL- or PCL-deficient UKA that adjusts the posterior tibial slope might be an alternative treatment option for a skilled surgeon. Cite this article: Bone Joint Res 2022;11(7):494–502


Bone & Joint Open
Vol. 4, Issue 12 | Pages 914 - 922
1 Dec 2023
Sang W Qiu H Xu Y Pan Y Ma J Zhu L

Aims. Unicompartmental knee arthroplasty (UKA) is the preferred treatment for anterior medial knee osteoarthritis (OA) owing to the rapid postoperative recovery. However, the risk factors for UKA failure remain controversial. Methods. The clinical data of Oxford mobile-bearing UKAs performed between 2011 and 2017 with a minimum follow-up of five years were retrospectively analyzed. Demographic, surgical, and follow-up data were collected. The Cox proportional hazards model was used to identify the risk factors that contribute to UKA failure. Kaplan-Meier survival was used to compare the effect of the prosthesis position on UKA survival. Results. A total of 407 patients who underwent UKA were included in the study. The mean age of patients was 61.8 years, and the mean follow-up period of the patients was 91.7 months. The mean Knee Society Score (KSS) preoperatively and at the last follow-up were 64.2 and 89.7, respectively (p = 0.001). Overall, 28 patients (6.9%) with UKA underwent revision due to prosthesis loosening (16 patients), dislocation (eight patients), and persistent pain (four patients). Cox proportional hazards model analysis identified malposition of the prostheses as a high-risk factor for UKA failure (p = 0.007). Kaplan-Meier analysis revealed that the five-year survival rate of the group with malposition was 85.1%, which was significantly lower than that of the group with normal position (96.2%; p < 0.001). Conclusion. UKA constitutes an effective method for treating anteromedial knee OA, with an excellent five-year survival rate. Aseptic loosening caused by prosthesis malposition was identified as the main cause of UKA failure. Surgeons should pay close attention to prevent the potential occurrence of this problem. Cite this article: Bone Jt Open 2023;4(12):914–922


Bone & Joint Open
Vol. 4, Issue 12 | Pages 923 - 931
4 Dec 2023
Mikkelsen M Rasmussen LE Price A Pedersen AB Gromov K Troelsen A

Aims. The aim of this study was to describe the pattern of revision indications for unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) and any change to this pattern for UKA patients over the last 20 years, and to investigate potential associations to changes in surgical practice over time. Methods. All primary knee arthroplasty surgeries performed due to primary osteoarthritis and their revisions reported to the Danish Knee Arthroplasty Register from 1997 to 2017 were included. Complex surgeries were excluded. The data was linked to the National Patient Register and the Civil Registration System for comorbidity, mortality, and emigration status. TKAs were propensity score matched 4:1 to UKAs. Revision risks were compared using competing risk Cox proportional hazard regression with a shared γ frailty component. Results. Aseptic loosening (loosening) was the most common revision indication for both UKA (26.7%) and TKA (29.5%). Pain and disease progression accounted for 54.6% of the remaining UKA revisions. Infections and instability accounted for 56.1% of the remaining TKA revision. The incidence of revision due to loosening or pain decreased over the last decade, being the second and third least common indications in 2017. There was a decrease associated with fixation method for pain (hazard ratio (HR) 0.40; 95% confidence interval (CI) 0.17 to 0.94) and loosening (HR 0.29; 95% CI 0.10 to 0.81) for cementless compared to cemented, and units UKA usage for pain (HR 0.67, 95% CI 0.50 to 0.91), and loosening (HR 0.51; 95% CI 0.37 to 0.70) for high usage. Conclusion. The overall revision patterns for UKA and TKA for the last 20 years are comparable to previous published patterns. We found large changes to UKA revision patterns in the last decade, and with the current surgical practice, revision due to pain or loosening are significantly less likely. Cite this article: Bone Jt Open 2023;4(12):923–931


Bone & Joint Open
Vol. 5, Issue 11 | Pages 992 - 998
6 Nov 2024
Wignadasan W Magan A Kayani B Fontalis A Chambers A Rajput V Haddad FS

Aims. While residual fixed flexion deformity (FFD) in unicompartmental knee arthroplasty (UKA) has been associated with worse functional outcomes, limited evidence exists regarding FFD changes. The objective of this study was to quantify FFD changes in patients with medial unicompartmental knee arthritis undergoing UKA, and investigate any correlation with clinical outcomes. Methods. This study included 136 patients undergoing robotic arm-assisted medial UKA between January 2018 and December 2022. The study included 75 males (55.1%) and 61 (44.9%) females, with a mean age of 67.1 years (45 to 90). Patients were divided into three study groups based on the degree of preoperative FFD: ≤ 5°, 5° to ≤ 10°, and > 10°. Intraoperative optical motion capture technology was used to assess pre- and postoperative FFD. Clinical FFD was measured pre- and postoperatively at six weeks and one year following surgery. Preoperative and one-year postoperative Oxford Knee Scores (OKS) were collected. Results. Overall, the median preoperative navigated (NAV) FFD measured 6.0° (IQR 3.1 to 8), while the median postoperative NAV FFD was 3.0° (IQR 1° to 4.4°), representing a mean correction of 49.2%. The median preoperative clinical FFD was 5° (IQR 0° to 9.75°) for the entire cohort, which decreased to 3.0° (IQR 0° to 5°) and 2° (IQR 0° to 3°) at six weeks and one year postoperatively, respectively. A statistically significant improvement in PROMs compared with baseline was evident in all groups (p < 0.001). Regression analyses showed that participants who experienced a larger FFD correction, showed greater improvement in PROMs (β = 0.609, p = 0.049; 95% CI 0.002 to 1.216). Conclusion. This study found that UKA was associated with an approximately 50% improvement in preoperative FFD across all three examined groups. Participants with greater correction of FFD also demonstrated larger OKS gains. These findings could prove a useful augment to clinical decision-making regarding candidacy for UKA and anticipated improvements in FFD


Bone & Joint Research
Vol. 9, Issue 9 | Pages 593 - 600
1 Sep 2020
Lee J Koh Y Kim PS Kang KW Kwak YH Kang K

Aims. Unicompartmental knee arthroplasty (UKA) has become a popular method of treating knee localized osteoarthritis (OA). Additionally, the posterior cruciate ligament (PCL) is essential to maintaining the physiological kinematics and functions of the knee joint. Considering these factors, the purpose of this study was to investigate the biomechanical effects on PCL-deficient knees in medial UKA. Methods. Computational simulations of five subject-specific models were performed for intact and PCL-deficient UKA with tibial slopes. Anteroposterior (AP) kinematics and contact stresses of the patellofemoral (PF) joint and the articular cartilage were evaluated under the deep-knee-bend condition. Results. As compared to intact UKA, there was no significant difference in AP translation in PCL-deficient UKA with a low flexion angle, but AP translation significantly increased in the PCL-deficient UKA with high flexion angles. Additionally, the increased AP translation became decreased as the posterior tibial slope increased. The contact stress in the PF joint and the articular cartilage significantly increased in the PCL-deficient UKA, as compared to the intact UKA. Additionally, the increased posterior tibial slope resulted in a significant decrease in the contact stress on PF joint but significantly increased the contact stresses on the articular cartilage. Conclusion. Our results showed that the posterior stability for low flexion activities in PCL-deficient UKA remained unaffected; however, the posterior stability for high flexion activities was affected. This indicates that a functional PCL is required to ensure normal stability in UKA. Additionally, posterior stability and PF joint may reduce the overall risk of progressive OA by increasing the posterior tibial slope. However, the excessive posterior tibial slope must be avoided. Cite this article: Bone Joint Res 2020;9(9):593–600


Bone & Joint Research
Vol. 8, Issue 12 | Pages 593 - 600
1 Dec 2019
Koh Y Lee J Lee H Kim H Chung H Kang K

Aims. Commonly performed unicompartmental knee arthroplasty (UKA) is not designed for the lateral compartment. Additionally, the anatomical medial and lateral tibial plateaus have asymmetrical geometries, with a slightly dished medial plateau and a convex lateral plateau. Therefore, this study aims to investigate the native knee kinematics with respect to the tibial insert design corresponding to the lateral femoral component. Methods. Subject-specific finite element models were developed with tibiofemoral (TF) and patellofemoral joints for one female and four male subjects. Three different TF conformity designs were applied. Flat, convex, and conforming tibial insert designs were applied to the identical femoral component. A deep knee bend was considered as the loading condition, and the kinematic preservation in the native knee was investigated. Results. The convex design, the femoral rollback, and internal rotation were similar to those of the native knee. However, the conforming design showed a significantly decreased femoral rollback and internal rotation compared with that of the native knee (p < 0.05). The flat design showed a significant difference in the femoral rollback; however, there was no difference in the tibial internal rotation compared with that of the native knee. Conclusion. The geometry of the surface of the lateral tibial plateau determined the ability to restore the rotational kinematics of the native knee. Surgeons and implant designers should consider the geometry of the anatomical lateral tibial plateau as an important factor in the restoration of native knee kinematics after lateral UKA. Cite this article: Bone Joint Res 2019;8:593–600


Bone & Joint Research
Vol. 8, Issue 11 | Pages 563 - 569
1 Nov 2019
Koh Y Lee J Lee H Kim H Kang K

Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method. Methods. Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and volumetric wear under gait cycle loading conditions. Results. Conforming design inserts had the lower contact pressure and larger contact area. However, they also had the higher wear rate and volumetric wear. The improved wear performance was found with AMD inserts. In addition, the computationally predicted volumetric wear of crosslinked UHMWPE inserts was less than half that of standard UHMWPE inserts. Conclusion. Our results showed that increasing conformity may not be the sole predictor of wear performance; highly crosslinked mobile-bearing polyethylene inserts can also provide improvement in wear performance. These results provide improvements in design and materials to reduce wear in mobile-bearing UKA. Cite this article: Bone Joint Res 2019;8:563–569


Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty for patients who require treatment of single-compartment osteoarthritis, especially for young patients. To satisfy this requirement, new patient-specific prosthetic designs have been introduced. The patient-specific UKA is designed on the basis of data from preoperative medical images. In general, knee implant design with increased conformity has been developed to provide lower contact stress and reduced wear on the tibial insert compared with flat knee designs. The different tibiofemoral conformity may provide designers the opportunity to address both wear and kinematic design goals simultaneously. The aim of this study was to evaluate wear prediction with respect to tibiofemoral conformity design in patient-specific UKA under gait loading conditions by using a previously validated computational wear method. Methods. Three designs with different conformities were developed with the same femoral component: a flat design normally used in fixed-bearing UKA, a tibia plateau anatomy mimetic (AM) design, and an increased conforming design. We investigated the kinematics, contact stress, contact area, wear rate, and volumetric wear of the three different tibial insert designs. Results. Conforming increased design showed a lower contact stress and increased contact area. In addition, increased conformity resulted in a reduction of the wear rate and volumetric wear. However, the increased conformity design showed limited kinematics. Conclusion. Our results indicated that increased conformity provided improvements in wear but resulted in limited kinematics. Therefore, increased conformity should be avoided in fixed-bearing patient-specific UKA design. We recommend a flat or plateau AM tibial insert design in patient-specific UKA. Cite this article: Y-G. Koh, K-M. Park, H-Y. Lee, K-T. Kang. Influence of tibiofemoral congruency design on the wear of patient-specific unicompartmental knee arthroplasty using finite element analysis. Bone Joint Res 2019;8:156–164. DOI: 10.1302/2046-3758.83.BJR-2018-0193.R1


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1088 - 1095
1 Jun 2021
Banger M Doonan J Rowe P Jones B MacLean A Blyth MJB

Aims. Unicompartmental knee arthroplasty (UKA) is a bone-preserving treatment option for osteoarthritis localized to a single compartment in the knee. The success of the procedure is sensitive to patient selection and alignment errors. Robotic arm-assisted UKA provides technological assistance to intraoperative bony resection accuracy, which is thought to improve ligament balancing. This paper presents the five-year outcomes of a comparison between manual and robotically assisted UKAs. Methods. The trial design was a prospective, randomized, parallel, single-centre study comparing surgical alignment in patients undergoing UKA for the treatment of medial compartment osteoarthritis (ISRCTN77119437). Participants underwent surgery using either robotic arm-assisted surgery or conventional manual instrumentation. The primary outcome measure (surgical accuracy) has previously been reported, and, along with secondary outcomes, were collected at one-, two-, and five-year timepoints. Analysis of five-year results and longitudinal analysis for all timepoints was performed to compare the two groups. Results. Overall, 104 (80%) patients of the original 130 who received surgery were available at five years (55 robotic, 49 manual). Both procedures reported successful results over all outcomes. At five years, there were no statistical differences between the groups in any of the patient reported or clinical outcomes. There was a lower reintervention rate in the robotic arm-assisted group with 0% requiring further surgery compared with six (9%) of the manual group requiring additional surgical intervention (p < 0.001). Conclusion. This study has shown excellent clinical outcomes in both groups with no statistical or clinical differences in the patient-reported outcome measures. The notable difference was the lower reintervention rate at five years for roboticarm-assisted UKA when compared with a manual approach. Cite this article: Bone Joint J 2021;103-B(6):1088–1095


Bone & Joint Open
Vol. 2, Issue 1 | Pages 48 - 57
19 Jan 2021
Asokan A Plastow R Kayani B Radhakrishnan GT Magan AA Haddad FS

Cementless knee arthroplasty has seen a recent resurgence in popularity due to conceptual advantages, including improved osseointegration providing biological fixation, increased surgical efficiency, and reduced systemic complications associated with cement impaction and wear from cement debris. Increasingly younger and higher demand patients are requiring knee arthroplasty, and as such, there is optimism cementless fixation may improve implant survivorship and functional outcomes. Compared to cemented implants, the National Joint Registry (NJR) currently reports higher revision rates in cementless total knee arthroplasty (TKA), but lower in unicompartmental knee arthroplasty (UKA). However, recent studies are beginning to show excellent outcomes with cementless implants, particularly with UKA which has shown superior performance to cemented varieties. Cementless TKA has yet to show long-term benefit, and currently performs equivalently to cemented in short- to medium-term cohort studies. However, with novel concepts including 3D-printed coatings, robotic-assisted surgery, radiostereometric analysis, and kinematic or functional knee alignment principles, it is hoped they may help improve the outcomes of cementless TKA in the long-term. In addition, though cementless implant costs remain higher due to novel implant coatings, it is speculated cost-effectiveness can be achieved through greater surgical efficiency and potential reduction in revision costs. There is paucity of level one data on long-term outcomes between fixation methods and the cost-effectiveness of modern cementless knee arthroplasty. This review explores recent literature on cementless knee arthroplasty, with regards to clinical outcomes, implant survivorship, complications, and cost-effectiveness; providing a concise update to assist clinicians on implant choice. Cite this article: Bone Jt Open 2021;2(1):48–57


Bone & Joint Research
Vol. 7, Issue 1 | Pages 20 - 27
1 Jan 2018
Kang K Son J Suh D Kwon SK Kwon O Koh Y

Objectives. Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient’s own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA. Methods. The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs. Results. The contact stresses on the PE insert were similar for both the PS and standard UKAs. Compared with the standard UKA, the PS UKA did not show any biomechanical effect on the medial PE insert. However, the contact stresses on the articular cartilage and the meniscus in the lateral compartment following the PS UKA exhibited closer values to the healthy knee joint compared with the standard UKA. Conclusion. The PS UKA provided mechanics closer to those of the normal knee joint. The decreased contact stress on the opposite compartment may reduce the overall risk of progressive osteoarthritis. Cite this article: K-T. Kang, J. Son, D-S. Suh, S. K. Kwon, O-R. Kwon, Y-G. Koh. Patient-specific medial unicompartmental knee arthroplasty has a greater protective effect on articular cartilage in the lateral compartment: A Finite Element Analysis. Bone Joint Res 2018;7:20–27. DOI: 10.1302/2046-3758.71.BJR-2017-0115.R2


Bone & Joint Research
Vol. 8, Issue 3 | Pages 126 - 135
1 Mar 2019
Sekiguchi K Nakamura S Kuriyama S Nishitani K Ito H Tanaka Y Watanabe M Matsuda S

Objectives. Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. Methods. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle. Results. The femur was positioned more medially relative to the tibia, with increasing varus alignment of the tibial component. Medial/lateral (ML) translation was smallest in the 2° varus model. A greater posterior slope posteriorized the medial condyle and increased anterior cruciate ligament (ACL) tension. ML translation was increased in the > 7° posterior slope model and the 0° model. Conclusion. The current study suggests that the preferred tibial component alignment is between neutral and 2° varus in the coronal plane, and between 3° and 7° posterior slope in the sagittal plane. Varus > 4° or valgus alignment and excessive posterior slope caused excessive ML translation, which could be related to feelings of instability and could potentially have negative effects on clinical outcomes and implant durability. Cite this article: K. Sekiguchi, S. Nakamura, S. Kuriyama, K. Nishitani, H. Ito, Y. Tanaka, M. Watanabe, S. Matsuda. Bone Joint Res 2019;8:126–135. DOI: 10.1302/2046-3758.83.BJR-2018-0208.R2


The Bone & Joint Journal
Vol. 98-B, Issue 10_Supple_B | Pages 41 - 47
1 Oct 2016
Lisowski LA Meijer LI Bekerom MPJVD Pilot P Lisowski AE

Aims. The interest in unicompartmental knee arthroplasty (UKA) for medial osteoarthritis has increased rapidly but the long-term follow-up of the Oxford UKAs has yet to be analysed in non-designer centres. We have examined our ten- to 15-year clinical and radiological follow-up data for the Oxford Phase III UKAs. Patients and Methods. Between January 1999 and January 2005 a total of 138 consecutive Oxford Phase III arthroplasties were performed by a single surgeon in 129 patients for medial compartment osteoarthritis (71 right and 67 left knees, mean age 72.0 years (47 to 91), mean body mass index 28.2 (20.7 to 52.2)). Both clinical data and radiographs were prospectively recorded and obtained at intervals. Of the 129 patients, 32 patients (32 knees) died, ten patients (12 knees) were not able to take part in the final clinical and radiological assessment due to physical and mental conditions, but via telephone interview it was confirmed that none of these ten patients (12 knees) had a revision of the knee arthroplasty. One patient (two knees) was lost to follow-up. Results. The mean follow-up was 11.7 years (10 to 15). A total of 11 knees (8%) were revised. The survival at 15 years with revision for any reason as the endpoint was 90.6% (95% confidence interval (CI) 85.2 to 96.0) and revision related to the prosthesis was 99.3% (95% CI 97.9 to 100). The mean total Knee Society Score was 47 (0 to 80) pre-operatively and 81 (30 to 100) at latest follow-up. The mean Oxford Knee Score was 19 (12 to 40) pre-operatively and 42 (28 to 55) at final follow-up. Radiolucency beneath the tibial component occurred in 22 of 81 prostheses (27.2%) without evidence of loosening. Conclusion. This study supports the use of UKA in medial compartment osteoarthritis with excellent long-term functional and radiological outcomes with an excellent 15-year survival rate. Cite this article: Bone Joint J 2016;98-B(10 Suppl B):41–7


Bone & Joint Research
Vol. 6, Issue 1 | Pages 22 - 30
1 Jan 2017
Scott CEH Eaton MJ Nutton RW Wade FA Evans SL Pankaj P

Objectives. Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). Materials and Methods. A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed. Results. Experimental AE data and the FEM volume of cancellous bone with compressive strain < -3000 µε correlated strongly: R = 0.947, R. 2. = 0.847, percentage error 12.5% (p < 0.001). DIC and FEM data correlated: R = 0.838, R. 2. = 0.702, percentage error 4.5% (p < 0.001). FEM strain patterns included MB lateral edge concentrations; AP concentrations at keel, peg and at the region of load application. Cancellous strains were higher in AP implants at all loads: 2.2- (10 mm) to 3.2-times (6 mm) the volume of cancellous bone compressively strained < -7000 µε. Conclusion. AP tibial components display greater volumes of pathologically overstrained cancellous bone than MB implants of the same geometry. Increasing AP thickness does not overcome these pathological forces and comes at the cost of greater bone resection. Cite this article: C. E. H. Scott, M. J. Eaton, R. W. Nutton, F. A. Wade, S. L. Evans, P. Pankaj. Metal-backed versus all-polyethylene unicompartmental knee arthroplasty: Proximal tibial strain in an experimentally validated finite element model. Bone Joint Res 2017;6:22–30. DOI:10.1302/2046-3758.61.BJR-2016-0142.R1


Bone & Joint Research
Vol. 11, Issue 2 | Pages 91 - 101
1 Feb 2022
Munford MJ Stoddart JC Liddle AD Cobb JP Jeffers JRT

Aims

Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia.

Methods

In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 937 - 943
22 Oct 2024
Gregor RH Hooper GJ Frampton C

Aims

The aim of this study was to determine whether obesity had a detrimental effect on the long-term performance and survival of medial unicompartmental knee arthroplasties (UKAs).

Methods

This study reviewed prospectively collected functional outcome scores and revision rates of all medial UKA patients with recorded BMI performed in Christchurch, New Zealand, from January 2011 to September 2021. Patient-reported outcome measures (PROMs) were the primary outcome of this study, with all-cause revision rate analyzed as a secondary outcome. PROMs were taken preoperatively, at six months, one year, five years, and ten years postoperatively. There were 873 patients who had functional scores recorded at five years and 164 patients had scores recorded at ten years. Further sub-group analysis was performed based on the patient’s BMI. Revision data were available through the New Zealand Joint Registry for 2,323 UKAs performed during this time period.


Bone & Joint Open
Vol. 4, Issue 3 | Pages 129 - 137
1 Mar 2023
Patel A Edwards TC Jones G Liddle AD Cobb J Garner A

Aims

The metabolic equivalent of task (MET) score examines patient performance in relation to energy expenditure before and after knee arthroplasty. This study assesses its use in a knee arthroplasty population in comparison with the widely used Oxford Knee Score (OKS) and EuroQol five-dimension index (EQ-5D), which are reported to be limited by ceiling effects.

Methods

A total of 116 patients with OKS, EQ-5D, and MET scores before, and at least six months following, unilateral primary knee arthroplasty were identified from a database. Procedures were performed by a single surgeon between 2014 and 2019 consecutively. Scores were analyzed for normality, skewness, kurtosis, and the presence of ceiling/floor effects. Concurrent validity between the MET score, OKS, and EQ-5D was assessed using Spearman’s rank.