Advertisement for orthosearch.org.uk
Results 1 - 20 of 634
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1104 - 1109
1 Oct 2022
Hansjee S Giebaly DE Shaarani SR Haddad FS

We aim to explore the potential technologies for monitoring and assessment of patients undergoing arthroplasty by examining selected literature focusing on the technology currently available and reflecting on possible future development and application. The reviewed literature indicates a large variety of different hardware and software, widely available and used in a limited manner, to assess patients’ performance. There are extensive opportunities to enhance and integrate the systems which are already in existence to develop patient-specific pathways for rehabilitation. Cite this article: Bone Joint J 2022;104-B(10):1104–1109


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 507 - 514
1 Mar 2021
Chang JS Kayani B Wallace C Haddad FS

Aims. Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology. Methods. This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15 psi. Medial and lateral compartment pressures were recorded at 10°, 45°, and 90° of knee flexion. This study included 18 females (60%) and 12 males (40%) with a mean age of 65.2 years (SD 9.3). Mean preoperative hip-knee-ankle deformity was 6.3° varus (SD 2.7°). Results. TKA with functional alignment achieved balanced medial and lateral compartment pressures at 10° (25.0 psi (SD 6.1) vs 23.1 psi (SD 6.7), respectively; p = 0.140), 45° (21.4 psi (SD 5.9) vs 20.6 psi (SD 5.9), respectively; p = 0.510), and 90° (21.2 psi (SD 7.1) vs 21.6 psi (SD 9.0), respectively; p = 0.800) of knee flexion. Mean ICPD was 6.1 psi (SD 4.5; 0 to 14) at 10°, 5.4 psi (SD 3.9; 0 to 12) at 45°, and 4.9 psi (SD 4.45; 0 to 15) at 90° of knee flexion. Mean postoperative limb alignment was 2.2° varus (SD 1.0°). Conclusion. TKA using the functional alignment achieves balanced mediolateral soft-tissue tension through the arc of knee flexion as assessed using intraoperative pressure-sensor technology. Further clinical trials are required to determine if TKA with functional alignment translates to improvements in patient satisfaction and outcomes compared to conventional alignment techniques. Cite this article: Bone Joint J 2021;103-B(3):507–514


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 746 - 754
1 Apr 2021
Schnetzke M El Barbari J Schüler S Swartman B Keil H Vetter S Gruetzner PA Franke J

Aims. Complex joint fractures of the lower extremity are often accompanied by soft-tissue swelling and are associated with prolonged hospitalization and soft-tissue complications. The aim of the study was to evaluate the effect of vascular impulse technology (VIT) on soft-tissue conditioning in comparison with conventional elevation. Methods. A total of 100 patients were included in this prospective, randomized, controlled monocentre study allocated to the three subgroups of dislocated ankle fracture (n = 40), pilon fracture (n = 20), and intra-articular calcaneal fracture (n = 40). Patients were randomized to the two study groups in a 1:1 ratio. The effectiveness of VIT (intervention) compared with elevation (control) was analyzed separately for the whole study population and for the three subgroups. The primary endpoint was the time from admission until operability (in days). Results. The mean length of time until operability was 8.2 days (SD 3.0) in the intervention group and 10.2 days (SD 3.7) in the control group across all three fractures groups combined (p = 0.004). An analysis of the subgroups revealed that a significant reduction in the time to operability was achieved in two of the three: with 8.6 days (SD 2.2) versus 10.6 days (SD 3.6) in ankle fractures (p = 0.043), 9.8 days (SD 4.1) versus 12.5 days (SD 5.1) in pilon fractures (p = 0.205), and 7.0 days (SD 2.6) versus 8.4 days (SD 1.5) in calcaneal fractures (p = 0.043). A lower length of stay (p = 0.007), a reduction in pain (p. preop. = 0.05; p. discharge. < 0.001) and need for narcotics (p. preop. = 0.064; p. postop. = 0.072), an increased reduction in swelling (p < 0.001), and a lower revision rate (p = 0.044) could also be seen, and a trend towards fewer complications (p = 0.216) became apparent. Conclusion. Compared with elevation, VIT results in a significant reduction in the time to achieve operability in complex joint fractures of the lower limb. Cite this article: Bone Joint J 2021;103-B(4):746–754


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1005 - 1006
1 Jun 2021
Haddad FS


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 303 - 306
1 Apr 2024
Staats K Kayani B Haddad FS


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1469 - 1471
1 Dec 2019
Haddad FS Horriat S


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 1 - 2
1 Jan 2020
Haddad FS


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 4 | Pages 528 - 533
1 Jul 1995
Gillespie W Pekarsky B O'Connell D

Cost is a factor in the choice of prosthetic components in joint replacement. For a given performance, the least expensive components are the most cost-effective. When evaluating a new prosthesis with an unknown outcome, the use of an economic model allows estimation of potential cost-effectiveness. We used published data for the survival of cemented total hip replacements from Sweden, and cost and demographic information from New South Wales, Australia, in such a model. In young active total hip recipients a new prosthetic design which offered a 90% improvement in survivorship over 15 years and a 15% reduction in the cost of revision surgery, could be sold at a price of 2 to 2.5 times that of conventional cemented components such as the Charnley Low Friction Arthroplasty and still be cost-effective. Using more likely estimates of the improved performance of new technology, however, the upper limit of cost-effectiveness is an increase of 1.5 to 1. Only a very small increase in the cost of a prosthesis could ever be justified for older patients of either sex. Most of the potential benefits of a better level of survivorship appear towards the end of the 15-year period. The results of modelling may be incorporated in clinical trial design. Given the known performance of some well-established and relatively inexpensive designs of prostheses, very large randomised studies would be required to prove an improvement in performance


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1303 - 1309
1 Oct 2018
Nodzo SR Chang C Carroll KM Barlow BT Banks SA Padgett DE Mayman DJ Jerabek SA

Aims

The aim of this study was to evaluate the accuracy of implant placement when using robotic assistance during total hip arthroplasty (THA).

Patients and Methods

A total of 20 patients underwent a planned THA using preoperative CT scans and robotic-assisted software. There were nine men and 11 women (n = 20 hips) with a mean age of 60.8 years (sd 6.0). Pelvic and femoral bone models were constructed by segmenting both preoperative and postoperative CT scan images. The preoperative anatomical landmarks using the robotic-assisted system were matched to the postoperative 3D reconstructions of the pelvis. Acetabular and femoral component positions as measured intraoperatively and postoperatively were evaluated and compared.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 454 - 458
1 Apr 2012
Goldberg AJ MacGregor A Spencer SA

With the established success of the National Joint Registry and the emergence of a range of new national initiatives for the capture of electronic data in the National Health Service, orthopaedic surgery in the United Kingdom has found itself thrust to the forefront of an information revolution. In this review we consider the benefits and threats that this revolution poses, and how orthopaedic surgeons should marshal their resources to ensure that this is a force for good.


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 696 - 702
1 May 2016
Theologis AA Burch S Pekmezci M

Aims

We compared the accuracy, operating time and radiation exposure of the introduction of iliosacral screws using O-arm/Stealth Navigation and standard fluoroscopy.

Materials and Methods

Iliosacral screws were introduced percutaneously into the first sacral body (S1) of ten human cadavers, four men and six women. The mean age was 77 years (58 to 85). Screws were introduced using a standard technique into the left side of S1 using C-Arm fluoroscopy and then into the right side using O-Arm/Stealth Navigation. The radiation was measured on the surgeon by dosimeters placed under a lead thyroid shield and apron, on a finger, a hat and on the cadavers.


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1333 - 1338
1 Oct 2014
Gustke KA Golladay GJ Roche MW Jerry GJ Elson LC Anderson CR

The aim of this prospective multicentre study was to report the patient satisfaction after total knee replacement (TKR), undertaken with the aid of intra-operative sensors, and to compare these results with previous studies. A total of 135 patients undergoing TKR were included in the study. The soft-tissue balance of each TKR was quantified intra-operatively by the sensor, and 18 (13%) were found to be unbalanced. A total of 113 patients (96.7%) in the balanced group and 15 (82.1%) in the unbalanced group were satisfied or very satisfied one year post-operatively (p = 0.043).

A review of the literature identified no previous study with a mean level of satisfaction that was greater than the reported level of satisfaction of the balanced TKR group in this study. Ensuring soft-tissue balance by using intra-operative sensors during TKR may improve satisfaction.

Cite this article: Bone Joint J 2014;96-B:1333–8


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 7 | Pages 942 - 943
1 Sep 2000
Sarmiento A


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 114 - 120
1 Feb 2024
Khatri C Metcalfe A Wall P Underwood M Haddad FS Davis ET

Total hip and knee arthroplasty (THA, TKA) are largely successful procedures; however, both have variable outcomes, resulting in some patients being dissatisfied with the outcome. Surgeons are turning to technologies such as robotic-assisted surgery in an attempt to improve outcomes. Robust studies are needed to find out if these innovations are really benefitting patients. The Robotic Arthroplasty Clinical and Cost Effectiveness Randomised Controlled Trials (RACER) trials are multicentre, patient-blinded randomized controlled trials. The patients have primary osteoarthritis of the hip or knee. The operation is Mako-assisted THA or TKA and the control groups have operations using conventional instruments. The primary clinical outcome is the Forgotten Joint Score at 12 months, and there is a built-in analysis of cost-effectiveness. Secondary outcomes include early pain, the alignment of the components, and medium- to long-term outcomes. This annotation outlines the need to assess these technologies and discusses the design and challenges when conducting such trials, including surgical workflows, isolating the effect of the operation, blinding, and assessing the learning curve. Finally, the future of robotic surgery is discussed, including the need to contemporaneously introduce and evaluate such technologies. Cite this article: Bone Joint J 2024;106-B(2):114–120


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 24 - 30
1 Mar 2024
Fontalis A Wignadasan W Mancino F The CS Magan A Plastow R Haddad FS

Aims. Postoperative length of stay (LOS) and discharge dispositions following arthroplasty can be used as surrogate measurements for improvements in patients’ pathways and costs. With the increasing use of robotic technology in arthroplasty, it is important to assess its impact on LOS. The aim of this study was to identify factors associated with decreased LOS following robotic arm-assisted total hip arthroplasty (RO THA) compared with the conventional technique (CO THA). Methods. This large-scale, single-institution study included 1,607 patients of any age who underwent 1,732 primary THAs for any indication between May 2019 and January 2023. The data which were collected included the demographics of the patients, LOS, type of anaesthetic, the need for treatment in a post-anaesthesia care unit (PACU), readmission within 30 days, and discharge disposition. Univariate and multivariate logistic regression models were used to identify factors and the characteristics of patients which were associated with delayed discharge. Results. The multivariate model identified that age, female sex, admission into a PACU, American Society of Anesthesiologists grade > II, and CO THA were associated with a significantly higher risk of a LOS of > two days. The median LOS was 54 hours (interquartile range (IQR) 34 to 78) in the RO THA group compared with 60 hours (IQR 51 to 100) in the CO THA group (p < 0.001). The discharge dispositions were comparable between the two groups. A higher proportion of patients undergoing CO THA required PACU admission postoperatively, although without reaching statistical significance (7.2% vs 5.2%, p = 0.238). Conclusion. We found that among other baseline characteristics and comorbidities, RO THA was associated with a significantly shorter LOS, with no difference in discharge destination. With the increasing demand for THA, these findings suggest that robotic assistance in THA could reduce costs. However, randomized controlled trials are required to investigate the cost-effectiveness of this technology. Cite this article: Bone Joint J 2024;106-B(3 Supple A):24–30


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care. Cite this article: Bone Joint J 2024;106-B(11):1206–1215


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 102 - 108
1 Feb 2023
MacDessi SJ Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Orthopaedic surgeons are currently faced with an overwhelming number of choices surrounding total knee arthroplasty (TKA), not only with the latest technologies and prostheses, but also fundamental decisions on alignment philosophies. From ‘mechanical’ to ‘adjusted mechanical’ to ‘restricted kinematic’ to ‘unrestricted kinematic’ — and how constitutional alignment relates to these — there is potential for ambiguity when thinking about and discussing such concepts. This annotation summarizes the various alignment strategies currently employed in TKA. It provides a clear framework and consistent language that will assist surgeons to compare confidently and contrast the concepts, while also discussing the latest opinions about alignment in TKA. Finally, it provides suggestions for applying consistent nomenclature to future research, especially as we explore the implications of 3D alignment patterns on patient outcomes. Cite this article: Bone Joint J 2023;105-B(2):102–108


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1039 - 1043
1 Oct 2024
Luo TD Kayani B Magan A Haddad FS

The subject of noise in the operating theatre was recognized as early as 1972 and has been compared to noise levels on a busy highway. While noise-induced hearing loss in orthopaedic surgery specifically has been recognized as early as the 1990s, it remains poorly studied. As a result, there has been renewed focus in this occupational hazard. Noise level is typically measured in decibels (dB), whereas noise adjusted for human perception uses A-weighted sound levels and is expressed in dBA. Mean operating theatre noise levels range between 51 and 75 dBA, with peak levels between 80 and 119 dBA. The greatest sources of noise emanate from powered surgical instruments, which can exceed levels as high as 140 dBA. Newer technology, such as robotic-assisted systems, contribute a potential new source of noise. This article is a narrative review of the deleterious effects of prolonged noise exposure, including noise-induced hearing loss in the operating theatre team and the patient, intraoperative miscommunication, and increased cognitive load and stress, all of which impact the surgical team’s overall performance. Interventions to mitigate the effects of noise exposure include the use of quieter surgical equipment, the implementation of sound-absorbing personal protective equipment, or changes in communication protocols. Future research endeavours should use advanced research methods and embrace technological innovations to proactively mitigate the effects of operating theatre noise. Cite this article: Bone Joint J 2024;106-B(10):1039–1043


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 764 - 774
1 Aug 2024
Rivera RJ Karasavvidis T Pagan C Haffner R Ast MP Vigdorchik JM Debbi EM

Aims. Conventional patient-reported surveys, used for patients undergoing total hip arthroplasty (THA), are limited by subjectivity and recall bias. Objective functional evaluation, such as gait analysis, to delineate a patient’s functional capacity and customize surgical interventions, may address these shortcomings. This systematic review endeavours to investigate the application of objective functional assessments in appraising individuals undergoing THA. Methods. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied. Eligible studies of THA patients that conducted at least one type of objective functional assessment both pre- and postoperatively were identified through Embase, Medline/PubMed, and Cochrane Central database-searching from inception to 15 September 2023. The assessments included were subgrouped for analysis: gait analysis, motion analysis, wearables, and strength tests. Results. A total of 130 studies using 15 distinct objective functional assessment methods (FAMs) were identified. The most frequently used method was instrumented gait/motion analysis, followed by the Timed-Up-and-Go test (TUG), 6 minute walk test, timed stair climbing test, and various strength tests. These assessments were characterized by their diagnostic precision and applicability to daily activities. Wearables were frequently used, offering cost-effectiveness and remote monitoring benefits. However, their accuracy and potential discomfort for patients must be considered. Conclusion. The integration of objective functional assessments in THA presents promise as a progress-tracking modality for improving patient outcomes. Gait analysis and the TUG, along with advancing wearable sensor technology, have the potential to enhance patient care, surgical planning, and rehabilitation. Cite this article: Bone Joint J 2024;106-B(8):764–774


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 843 - 849
1 Aug 2023
Grandhi TSP Fontalis A Raj RD Kim WJ Giebaly DE Haddad FS

Telehealth has the potential to change the way we approach patient care. From virtual consenting to reducing carbon emissions, costs, and waiting times, it is a powerful tool in our clinical armamentarium. There is mounting evidence that remote diagnostic evaluation and decision-making have reached an acceptable level of accuracy and can safely be adopted in orthopaedic surgery. Furthermore, patients’ and surgeons’ satisfaction with virtual appointments are comparable to in-person consultations. Challenges to the widespread use of telehealth should, however, be acknowledged and include the cost of installation, training, maintenance, and accessibility. It is also vital that clinicians are conscious of the medicolegal and ethical considerations surrounding the medium and adhere strictly to the relevant data protection legislation and storage framework. It remains to be seen how organizations harness the full spectrum of the technology to facilitate effective patient care. Cite this article: Bone Joint J 2023;105-B(8):843–849