Total knee arthroplasty (TKA) is an established
and successful procedure. However, the design of prostheses continues
to be modified in an attempt to optimise the functional outcome
of the patient. The aim of this study was to determine if patient outcome after
TKA was influenced by the design of the prosthesis used. A total of 212 patients (mean age 69; 43 to 92; 131 female (62%),
81 male (32%)) were enrolled in a single centre double-blind trial
and randomised to receive either a Kinemax (group 1) or a Triathlon
(group 2) TKA. Patients were assessed pre-operatively, at six weeks, six months,
one year and three years after surgery. The outcome assessments
used were the Oxford Knee Score; range of movement; pain numerical
rating scales; lower limb power output; timed functional assessment
battery and a satisfaction survey. Data were assessed incorporating
change over all assessment time points, using repeated measures
analysis of variance longitudinal mixed models. Implant group 2
showed a significantly greater range of movement (p = 0.009), greater
lower limb power output (p = 0.026) and reduced report of ‘worst
daily pain’ (p = 0.003) over the three years of follow-up. Differences
in Oxford Knee Score (p = 0.09), report of ‘average daily pain’
(p = 0.57) and timed functional performance tasks (p = 0.23) did
not reach statistical significance. Satisfaction with outcome was
significantly better in group 2 (p = 0.001). These results suggest that patient outcome after TKA can be influenced
by the prosthesis used. Cite this article:
We report our experience with a modified implant and a new technique for locked intramedullary nailing of the humerus in 41 patients. Locking was by cross-screws placed from lateral to medial in the proximal humerus, and anteroposteriorly in the distal humerus. Early in the series, 11 nails were inserted at the shoulder, but we found that rehabilitation was faster after retrograde nailing through the olecranon fossa, which was used for the other 30. We used a closed technique for 29 of the nailings. Of the 41 patients treated, 21 had acute fractures, five had nonunion, and 15 had pathological fractures. Secure fixation was obtained for comminuted and osteoporotic fractures in any part of the humeral shaft, which allowed the early use of crutches and walking frames. Two nails were locked at only one end, and one of these became the only failure of union after an acute fracture.
High-flexion total knee replacement (TKR) designs
have been introduced to improve flexion after TKR. Although the
early results of such designs were promising, recent literature
has raised concerns about the incidence of early loosening of the
femoral component. We compared the minimum force required to cause
femoral component loosening for six high-flexion and six conventional
TKR designs in a laboratory experiment. Each TKR
As advancements in total knee arthroplasty progress at an exciting pace, two areas are of special interest, as they directly impact
Aims. This systematic review and meta-analysis aimed to compare the influence of patellar resurfacing following cruciate-retaining (CR) and posterior-stabilized (PS) total knee arthroplasty (TKA) on the incidence of anterior knee pain, knee-specific patient-reported outcome measures, complication rates, and reoperation rates. Methods. A systematic review of MEDLINE, PubMed, and Google Scholar was performed to identify randomized controlled trials (RCTs) according to search criteria. Search terms used included: arthroplasty, replacement, knee (Mesh), TKA, prosthesis, patella, patellar resurfacing, and patellar retaining. RCTs that compared patellar resurfacing versus unresurfaced in primary TKA were included for further analysis. Studies were evaluated using the Scottish Intercollegiate Guidelines Network assessment tool for quality and minimization of bias. Data were synthesized and meta-analysis performed. Results. There were 4,135 TKAs (2,068 resurfaced and 2,027 unresurfaced) identified in 35 separate cohorts from 33 peer-reviewed studies. Anterior knee pain rates were significantly higher in unresurfaced knees overall (odds ratio (OR) 1.84; 95% confidence interval (CI) 1.20 to 2.83; p = 0.006) but more specifically associated with CR implants (OR 1.95; 95% CI 1.0 to 3.52; p = 0.030). There was a significantly better Knee Society function score (mean difference (MD) -1.98; 95% CI -1.1 to -2.84; p < 0.001) and Oxford Knee Score (MD -2.24; 95% CI -0.07 to -4.41; p = 0.040) for PS implants when patellar resurfacing was performed, but these differences did not exceed the minimal clinically important difference for these scores. There were no significant differences in complication rates or infection rates according to
Aims. This systematic review asked which patterns of complications are associated with the three reverse total shoulder arthroplasty (RTSA) prosthetic designs, as classified by Routman et al, in patients undergoing RTSA for the management of cuff tear arthropathy, massive cuff tear, osteoarthritis, and rheumatoid arthritis. The three
Aims. Wear of the polyethylene (PE) tibial insert of total knee arthroplasty (TKA) increases the risk of revision surgery with a significant cost burden on the healthcare system. This study quantifies wear performance of tibial inserts in a large and diverse series of retrieved TKAs to evaluate the effect of factors related to the patient, knee design, and bearing material on tibial insert wear performance. Methods. An institutional review board-approved retrieval archive was surveyed for modular PE tibial inserts over a range of in vivo duration (mean 58 months (0 to 290)). Five knee designs, totalling 1,585 devices, were studied. Insert wear was estimated from measured thickness change using a previously published method. Linear regression statistical analyses were used to test association of 12 patient and
Aims. The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling. Methods. Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC
Aims. The aim of this study was to develop a novel computational model for estimating head/stem taper mechanics during different simulated assembly conditions. Methods. Finite element models of generic cobalt-chromium (CoCr) heads on a titanium stem taper were developed and driven using dynamic assembly loads collected from clinicians. To verify contact mechanics at the taper interface, comparisons of deformed microgroove characteristics (height and width of microgrooves) were made between model estimates with those measured from five retrieved implants. Additionally, these models were used to assess the role of assembly technique—one-hit versus three-hits—on the taper interlock mechanical behaviour. Results. The model compared well to deformed microgrooves from the retrieved implants, predicting changes in microgroove height (mean 1.1 μm (0.2 to 1.3)) and width (mean 7.5 μm (1.0 to 18.5)) within the range of measured changes in height (mean 1.4 μm (0.4 to 2.3); p = 0.109) and width (mean 12.0 μm (1.5 to 25.4); p = 0.470). Consistent with benchtop studies, our model found that increasing assembly load magnitude led to increased taper engagement, contact pressure, and permanent deformation of the stem taper microgrooves. Interestingly, our model found assemblies using three hits at low loads (4 kN) led to decreased taper engagement, contact pressures and microgroove deformations throughout the stem taper compared with tapers assembled with one hit at the same magnitude. Conclusion. These findings suggest additional assembly hits at low loads lead to inferior taper interlock strength compared with one firm hit, which may be influenced by loading rate or material strain hardening. These unique models can estimate microgroove deformations representative of real contact mechanics seen on retrievals, which will enable us to better understand how both surgeon assembly techniques and
Aims. Total knee arthroplasty is an established treatment for knee osteoarthritis with excellent long-term results, but there remains controversy about the role of uncemented prostheses. We present the long-term results of a randomized trial comparing an uncemented tantalum metal tibial component with a conventional cemented component of the same
Aims. There are comparatively few randomized studies evaluating knee arthroplasty prostheses, and fewer still that report longer-term functional outcomes. The aim of this study was to evaluate mid-term outcomes of an existing implant trial cohort to document changing patient function over time following total knee arthroplasty using longitudinal analytical techniques and to determine whether
Aims. Although good clinical outcomes have been reported for monolithic tapered, fluted, titanium stems (TFTS), early results showed high rates of subsidence. Advances in stem design may mitigate these concerns. This study reports on the use of a current monolithic TFTS for a variety of indications. Methods. A multi-institutional retrospective study of all consecutive total hip arthroplasty (THA) and revision total hip arthroplasty (rTHA) patients who received the monolithic TFTS was conducted. Surgery was performed by eight fellowship-trained arthroplasty surgeons at four institutions. A total of 157 hips in 153 patients at a mean follow-up of 11.6 months (SD7.8) were included. Mean patient age at the time of surgery was 67.4 years (SD 13.3) and mean body mass index (BMI) was 28.9 kg/m. 2. (SD 6.5). Outcomes included intraoperative complications, one-year all-cause re-revisions, and subsidence at postoperative time intervals (two weeks, six weeks, six months, nine months, and one year). Results. There were eight intraoperative complications (4.9%), six of which were intraoperative fractures; none occurred during stem insertion. Six hips (3.7%) underwent re-revision within one year; only one procedure involved removal of the prosthesis due to infection. Mean total subsidence at latest follow-up was 1.64 mm (SD 2.47). Overall, 17 of 144 stems (11.8%) on which measurements could be performed had >5 mm of subsidence, and 3/144 (2.1%) had >10 mm of subsidence within one year. A univariate regression analysis found that additional subsidence after three months was minimal. A multivariate regression analysis found that subsidence was not significantly associated with periprosthetic fracture as an indication for surgery, the presence of an extended trochanteric osteotomy (ETO), Paprosky classification of femoral bone loss, stem length, or type of procedure performed (i.e. full revision vs conversion/primary). Conclusion. Advances in
Aims. Acromial fractures following reverse shoulder arthroplasty (RSA) have a wide range of incidences in reported case series. This study evaluates their incidence following RSA by systematically reviewing the current literature. Materials and Methods. A systematic review using the search terms “reverse shoulder”, “reverse total shoulder”, or “inverted shoulder” was performed using PubMed, Web of Science, and Cochrane databases between 1 January 2010 and 31 March 2018. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used. Studies were included if they reported on RSA outcomes and the incidence rate of acromial and/or scapular spine fractures. The rate of these fractures was evaluated for primary RSA, revision RSA, RSA indications, and RSA
Aims. Robotic-assisted unicompartmental knee arthroplasty (UKA) promises accurate implant placement with the potential of improved survival and functional outcomes. The aim of this study was to present the current evidence for robotic-assisted UKA and describe the outcome in terms of implant positioning, range of movement (ROM), function and survival, and the types of robot and implants that are currently used. Materials and Methods. A search of PubMed and Medline was performed in October 2018 in line with the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “knee”, and “surgery”. The criteria for inclusion was any study describing the use of robotic UKA and reporting implant positioning, ROM, function, and survival for clinical, cadaveric, or dry bone studies. Results. A total of 528 articles were initially identified from the databases and reference lists. Following full text screening, 38 studies that satisfied the inclusion criteria were included. In all, 20 studies reported on implant positioning, 18 on functional outcomes, 16 on survivorship, and six on ROM. The Mako (Stryker, Mahwah, New Jersey) robot was used in 32 studies (84%), the BlueBelt Navio (Blue Belt Technologies, Plymouth, Minnesota) in three (8%), the Sculptor RGA (Stanmore Implants, Borehamwood United Kingdom) in two (5%), and the Acrobot (The Acrobot Co. Ltd., London, United Kingdom) in one study (3%). The most commonly used implant was the Restoris MCK (Stryker). Nine studies (24%) did not report the implant that was used. The pooled survivorship at six years follow-up was 96%. However, when assessing survival according to
This multicentre retrospective observational study’s aims were to investigate whether there are differences in the occurrence of radiolucent lines (RLLs) following total knee arthroplasty (TKA) between the conventional Attune baseplate and its successor, the novel Attune S+, independent from other potentially influencing factors; and whether tibial baseplate design and presence of RLLs are associated with differing risk of revision. A total of 780 patients (39% male; median age 70.7 years (IQR 62.0 to 77.2)) underwent cemented TKA using the Attune Knee System) at five centres, and with the latest radiograph available for the evaluation of RLL at between six and 36 months from surgery. Univariate and multivariate logistic regression models were performed to assess associations between patient and implant-associated factors on the presence of tibial and femoral RLLs. Differences in revision risk depending on RLLs and tibial baseplate design were investigated with the log-rank test.Aims
Methods
The risk of mechanical failure of modular revision hip stems is frequently mentioned in the literature, but little is currently known about the actual clinical failure rates of this type of prosthesis. The current retrospective long-term analysis examines the distal and modular failure patterns of the Prevision hip stem from 18 years of clinical use. A design improvement of the modular taper was introduced in 2008, and the data could also be used to compare the original and the current design of the modular connection. We performed an analysis of the Prevision modular hip stem using the manufacturer’s vigilance database and investigated different mechanical failure patterns of the hip stem from January 2004 to December 2022.Aims
Methods
The optimal bearing surface design for medial unicompartmental knee arthroplasty (UKA) remains controversial. The aim of this study was to compare outcomes of fixed-bearing (FB) and mobile-bearing (MB) UKAs from a single high-volume institution. Prospectively collected data were reviewed for all primary cemented medial UKAs performed by seven surgeons from January 2006 to December 2022. A total of 2,999 UKAs were identified, including 2,315 FB and 684 MB cases. The primary outcome measure was implant survival. Secondary outcomes included 90-day and cumulative complications, reoperations, component revisions, conversion arthroplasties, range of motion, and patient-reported outcome measures. Overall mean age at surgery was 65.7 years (32.9 to 94.3), 53.1% (1,593/2,999) of UKAs were implanted in female patients, and demographics between groups were similar (p > 0.05). The mean follow-up for all UKAs was 3.7 years (0.0 to 15.6).Aims
Methods
Total knee arthroplasty (TKA) with a highly congruent condylar-stabilized (CS) articulation may be advantageous due to increased stability versus cruciate-retaining (CR) designs, while mitigating the limitations of a posterior-stabilized construct. The aim was to assess ten-year implant survival and functional outcomes of a cemented single-radius TKA with a CS insert, performed without posterior cruciate ligament sacrifice. This retrospective cohort study included consecutive patients undergoing TKA at a specialist centre in the UK between November 2010 and December 2012. Data were collected using a bespoke electronic database and cross-referenced with national arthroplasty audit data, with variables including: preoperative characteristics, intraoperative factors, complications, and mortality status. Patient-reported outcome measures (PROMs) were collected by a specialist research team at ten years post-surgery. There were 536 TKAs, of which 308/536 (57.5%) were in female patients. The mean age was 69.0 years (95% CI 45.0 to 88.0), the mean BMI was 32.2 kg/m2 (95% CI 18.9 to 50.2), and 387/536 (72.2%) survived to ten years. There were four revisions (0.7%): two deep infections (requiring debridement and implant retention), one aseptic loosening, and one haemosiderosis.Aims
Methods
The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.Aims
Methods
The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA). A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years.Aims
Methods