Prolonged waits for hip and knee arthroplasty have raised questions about the equity of current approaches to waiting list prioritization for those awaiting surgery. We therefore set out to understand key stakeholder (patient and surgeon) preferences for the prioritization of patients awaiting such surgery, in order to guide future waiting list redesign. A combined qualitative/quantitative approach was used. This comprised a Delphi study to first inform which factors patients and surgeons designate as important for prioritization of patients on hip and knee arthroplasty waiting lists, followed by a discrete choice experiment (DCE) to determine how the factors should be weighed against each other. Coefficient values for each included DCE attribute were used to construct a ‘priority score’ (weighted benefit score) that could be used to rank individual patients waiting for surgery based on their respective characteristics.Aims
Methods
To examine whether natural language processing (NLP) using a clinically based large language model (LLM) could be used to predict patient selection for total hip or total knee arthroplasty (THA/TKA) from routinely available free-text radiology reports. Data pre-processing and analyses were conducted according to the Artificial intelligence to Revolutionize the patient Care pathway in Hip and knEe aRthroplastY (ARCHERY) project protocol. This included use of de-identified Scottish regional clinical data of patients referred for consideration of THA/TKA, held in a secure data environment designed for artificial intelligence (AI) inference. Only preoperative radiology reports were included. NLP algorithms were based on the freely available GatorTron model, a LLM trained on over 82 billion words of de-identified clinical text. Two inference tasks were performed: assessment after model-fine tuning (50 Epochs and three cycles of k-fold cross validation), and external validation.Aims
Methods
There is increasing popularity in the use of artificial intelligence and machine-learning techniques to provide diagnostic and prognostic models for various aspects of Trauma & Orthopaedic surgery. However, correct interpretation of these models is difficult for those without specific knowledge of computing or health data science methodology. Lack of current reporting standards leads to the potential for significant heterogeneity in the design and quality of published studies. We provide an overview of machine-learning techniques for the lay individual, including key terminology and best practice reporting guidelines. Cite this article: