Aims. The number of convolutional neural networks (CNN) available for fracture detection and classification is rapidly increasing.
Aims. Machine-learning (ML) prediction models in orthopaedic trauma hold great promise in assisting clinicians in various tasks, such as personalized risk stratification. However, an overview of current applications and critical appraisal to peer-reviewed guidelines is lacking. The objectives of this study are to 1) provide an overview of current ML prediction models in orthopaedic trauma; 2) evaluate the completeness of reporting following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement; and 3) assess the risk of bias following the Prediction model Risk Of Bias Assessment Tool (PROBAST) tool. Methods. A systematic search screening 3,252 studies identified 45 ML-based prediction models in orthopaedic trauma up to January 2023. The TRIPOD statement assessed transparent reporting and the PROBAST tool the risk of bias. Results. A total of 40 studies reported on training and internal validation; four studies performed both development and
Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. Methods. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy. Results. We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy, while the support vector machine (SVM) determined impingement type with 72.9% accuracy. After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had similar impingement direction prediction rates (around 84.5%). Conclusion. This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated promising accuracy in predicting impingement, its type, and direction. While the addition of imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined annotations, such as landmark markings, offers avenues for future enhancement. Prior to clinical integration,
To develop prediction models using machine-learning (ML) algorithms for 90-day and one-year mortality prediction in femoral neck fracture (FNF) patients aged 50 years or older based on the Hip fracture Evaluation with Alternatives of Total Hip arthroplasty versus Hemiarthroplasty (HEALTH) and Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trials. This study included 2,388 patients from the HEALTH and FAITH trials, with 90-day and one-year mortality proportions of 3.0% (71/2,388) and 6.4% (153/2,388), respectively. The mean age was 75.9 years (SD 10.8) and 65.9% of patients (1,574/2,388) were female. The algorithms included patient and injury characteristics. Six algorithms were developed, internally validated and evaluated across discrimination (c-statistic; discriminative ability between those with risk of mortality and those without), calibration (observed outcome compared to the predicted probability), and the Brier score (composite of discrimination and calibration).Aims
Methods
Within healthcare, several measures are used to quantify and compare the severity of health conditions. Two common measures are disability weight (DW), a context-independent value representing severity of a health state, and utility weight (UW), a context-dependent measure of health-related quality of life. Neither of these measures have previously been determined for developmental dysplasia of the hip (DDH). The aim of this study is to determine the DW and country-specific UWs for DDH. A survey was created using three different methods to estimate the DW: a preference ranking exercise, time trade-off exercise, and visual analogue scale (VAS). Participants were fully licensed orthopaedic surgeons who were contacted through national and international orthopaedic organizations. A global DW was calculated using a random effects model through an inverse-variance approach. A UW was calculated for each country as one minus the country-specific DW composed of the time trade-off exercise and VAS.Aims
Methods
To identify variables independently associated with same-day discharge (SDD) of patients following revision total knee arthroplasty (rTKA) and to develop machine learning algorithms to predict suitable candidates for outpatient rTKA. Data were obtained from the American College of Surgeons National Quality Improvement Programme (ACS-NSQIP) database from the years 2018 to 2020. Patients with elective, unilateral rTKA procedures and a total hospital length of stay between zero and four days were included. Demographic, preoperative, and intraoperative variables were analyzed. A multivariable logistic regression (MLR) model and various machine learning techniques were compared using area under the curve (AUC), calibration, and decision curve analysis. Important and significant variables were identified from the models.Aims
Methods
Hip dysplasia (HD) leads to premature osteoarthritis. Timely detection and correction of HD has been shown to improve pain, functional status, and hip longevity. Several time-consuming radiological measurements are currently used to confirm HD. An artificial intelligence (AI) software named HIPPO automatically locates anatomical landmarks on anteroposterior pelvis radiographs and performs the needed measurements. The primary aim of this study was to assess the reliability of this tool as compared to multi-reader evaluation in clinically proven cases of adult HD. The secondary aims were to assess the time savings achieved and evaluate inter-reader assessment. A consecutive preoperative sample of 130 HD patients (256 hips) was used. This cohort included 82.3% females (n = 107) and 17.7% males (n = 23) with median patient age of 28.6 years (interquartile range (IQR) 22.5 to 37.2). Three trained readers’ measurements were compared to AI outputs of lateral centre-edge angle (LCEA), caput-collum-diaphyseal (CCD) angle, pelvic obliquity, Tönnis angle, Sharp’s angle, and femoral head coverage. Intraclass correlation coefficients (ICC) and Bland-Altman analyses were obtained.Aims
Methods
Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli.Aims
Methods
The primary aim was to estimate the cost-effectiveness of routine operative fixation for all patients with humeral shaft fractures. The secondary aim was to estimate the health economic implications of using a Radiographic Union Score for HUmeral fractures (RUSHU) of < 8 to facilitate selective fixation for patients at risk of nonunion. From 2008 to 2017, 215 patients (mean age 57 yrs (17 to 18), 61% female (n = 130/215)) with a nonoperatively managed humeral diaphyseal fracture were retrospectively identified. Union was achieved in 77% (n = 165/215) after initial nonoperative management, with 23% (n = 50/215) uniting after surgery for nonunion. The EuroQol five-dimension three-level health index (EQ-5D-3L) was obtained via postal survey. Multiple regression was used to determine the independent influence of patient, injury, and management factors upon the EQ-5D-3L. An incremental cost-effectiveness ratio (ICER) of < £20,000 per quality-adjusted life-year (QALY) gained was considered cost-effective.Aims
Methods
The aims of this study were to assess mapping models to predict the three-level version of EuroQoL five-dimension utility index (EQ-5D-3L) from the Oxford Knee Score (OKS) and validate these before and after total knee arthroplasty (TKA). A retrospective cohort of 5,857 patients was used to create the prediction models, and a second cohort of 721 patients from a different centre was used to validate the models, all of whom underwent TKA. Patient characteristics, BMI, OKS, and EQ-5D-3L were collected preoperatively and one year postoperatively. Generalized linear regression was used to formulate the prediction models.Aims
Methods
Artificial intelligence and machine-learning analytics have gained extensive popularity in recent years due to their clinically relevant applications. A wide range of proof-of-concept studies have demonstrated the ability of these analyses to personalize risk prediction, detect implant specifics from imaging, and monitor and assess patient movement and recovery. Though these applications are exciting and could potentially influence practice, it is imperative to understand when these analyses are indicated and where the data are derived from, prior to investing resources and confidence into the results and conclusions. In this article, we review the current benefits and potential limitations of machine-learning for the orthopaedic surgeon with a specific emphasis on data quality.
While preoperative bloodwork is routinely ordered, its value in determining which patients are at risk of postoperative readmission following total knee arthroplasty (TKA) and total hip arthroplasty (THA) is unclear. The objective of this study was to determine which routinely ordered preoperative blood markers have the strongest association with acute hospital readmission for patients undergoing elective TKA and THA. Two population-based retrospective cohorts were assembled for all adult primary elective TKA (n = 137,969) and THA (n = 78,532) patients between 2011 to 2018 across 678 North American hospitals using the American College of Surgeons National Quality Improvement Programme (ACS-NSQIP) registry. Six routinely ordered preoperative blood markers - albumin, haematocrit, platelet count, white blood cell count (WBC), estimated glomerular filtration rate (eGFR), and sodium level - were queried. The association between preoperative blood marker values and all-cause readmission within 30 days of surgery was compared using univariable analysis and multivariable logistic regression adjusted for relevant patient and treatment factors.Aims
Methods