Intervertebral disc degeneration (IDD) affects more than 80% of the population and is often linked to a reduction of the proteoglycan content within the nucleus pulposus (NP). The nutritional decline and accumulation of degraded matrix products promote the inflammatory process favoring the onset of disease. Several regenerative approaches based on cell therapy have been explored. Recently, paracrine factors and extracellular vesicles (EVs) such as exosomes have been described to play a fundamental role in the cross-talk between mesenchymal stem cells (MSCs) and NP in the microenvironment. EVs vehicule different molecules: proteins, nucleic acids and lipids involved in intercellular communication regulating the homeostasis of recipient cells. Therefore, MSCs-derived exosomes are an interesting emerging tool for cell-free therapies in IDD. The aim of this study was to evaluate the in vitro effects of MSCs derived exosomes on human NP cells (hNPCs).
Intervertebral disc degeneration (IDD) affects more than 80% of the population all over the world. Current strategies for the treatment of IDD are based on conservative or surgical procedures with the aim of relieving pain. Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy in recent decades, but studies showed that the particularly hostile microenvironment in the intervertebral disc (IVD) can compromise cells survival rate. The use of exosomes, extracellular vesicles released by various cell types, possess considerable economic advantages including low immunogenicity and toxicity.
Osteoarthritis (OA) is a common age-related degenerative joint disease, affecting 7% of the global population, more than 500 million people worldwide.
Mesenchymal stem cell (MSC) exosomes are intracellular vesicles, which can regulate transcription and control gene expression through the molecules they carry, easily enter into the target cell, contain no regenerative effect, and do not produce an immune response. There are different methods in the literature to obtain these vesicles. However, studies on the isolation of MSC-derived exosomes and their comparative characterization using magnetically active cell sorting (MACS) and ultracentrifugation methods are lacking. The most appropriate isolation method for MSC-derived exosomes can be determined by comparing the isolation and characterization parameters of mesenchymal stem cells using magnetically active cell sorting and ultracentrifugation methods. The aim of this study was to define the advantages and disadvantages of the methods used for determining the purpose-oriented method. Human bone marrow-derived mesenchymal stem cells were cultured in standard MSC culture conditions (37ºC and 5% CO 2). Exosomal contamination was prevented by removal of exosomes from the serum that used in the standard growth medium. For exosome isolation of the cells reaching sufficient density, the media were replaced with new ones every two days, the old media were collected in liquid refrigerated with liquid nitrogen and stored at −80ºC. Part of the accumulated exosomes were isolated by using the MACS method, while the other was isolated by using the ultracentrifugation method, which included serial centrifugation steps. The amount of protein contained in the phosphate buffer solution in which the exosomes were reconstituted was determined by microplate reader using the BCA kit. Based on the protein concentration obtained, exosomes were read by means of a dye flow cytometer with fluorescent antibodies attached to surface markers specific to CD9, CD63, and CD81 specific for exosomes by latex beads. Finally, the exosomes were stained with uranyl acetate and phosphotungstic acid and then placed on 200 mesh and formvar-carbon film coated grids.
Introduction and Objective. Exosomal miRNA have been shown to regulate many myogenic and osteogenic pathways involved in injury repair and healing. It is also known that rehabilitation and exercise can improve muscle mass and bone growth. The mechanisms by which this occurs in vivo are well studied, but the impact exosomes and their associated miRNA cargo have is unclear. With this knowledge and question in mind, we hypothesized that C2C12 myoblasts subjected to in vitro mechanical stimulus (“exercise”) would exhibit improved exosome production and differentially expressed miRNA cargo when compared to their static (“unexercised”) counterparts. Materials and Methods. C2C12 myoblasts were cultured using the FlexCell FX-5000TT bioreactor. Two exercise regimens were programmed: 1) low intensity regimen (LIR) (0–15% strain at 0.5 Hz for 24 hours) 2) high intensity interval regimen (HIIR) (12–22% strain at 1 Hz for 10 minutes followed by 50 minutes of rest repeated for 24 hours). Unexercised (static) cells were cultured in parallel.
Osteochondral (OC) defects of the knee are associated with pain and significant limitation of activity. Studies have demonstrated the therapeutic efficacy of mesenchymal stem cell (MSC) therapies in treating osteochondral defects. There is increasing evidence that the efficacy of MSC therapies may be a result of the paracrine secretion, particularly exosomes. Here, we examine the effects of MSC exosomes in combination with Hyaluronic Acid (HA) as an injectable therapy on functional osteochondral regeneration in a rabbit osteochondral defect model.
Osteoarthritis (OA), the most prevalent chronic joint disease, represents a relevant social and economic burden worldwide. Human umbilical cord mesenchymal stem cells (HUCMSCs) have been used for injection into the joint cavity to treat OA. The aim of this article is to clarify whether Huc-MSCs derived exosomes could inhibit the progression of OA and the mechanism in this process. A rabbit OA model was established by the transection of the anterior cruciate ligament. The effects of HUCMSCs or exosomes derived from HUCMSCs on repairing articular cartilage of knee osteoarthritis was examined by micro-CT. Immunohistochemical experiments were used to confirm the expression of relevant inflammatory molecules in OA. In vitro experiments, Transwell assay was used to assess the migration of macrophages induced by TNF-a. Results showed that a large number of macrophages migrated in arthcular cavity in OA model in vivo, while local injection of HUCMSCs and exosomes did repair the articular cartilage. Immunohistochemical results suggested that the expression of CCL2 and CD68 in the OA rabbit model increased significantly, but was significantly reduced by HUCMSCs or exosomes. Transwell assay showed that both HUCMSCs and exosomes can effectively inhibit the migration of macrophage. In conclusion, the exosomes derived by HUCMSCs might might rescue cartilage defects in rabbit through its anti-inflammatory effects through inhibiting CCL2.
The aim of this study was to investigate the regenerative effects of Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs) derived exosomes (WJ-Exos) on human nucleus pulposus cells (hNPCs) in an in vitro 3D model. WJ-Exos were isolated by tangent flow filtration of WJ-MSCs conditioned media and characterized by TEM, WB for markers expression and quantified with NTA. WJ-Exos PKH26-labeled uptake in hNPCs was detected by confocal microscopy. hNPCs, isolated from surgical specimens (n=4), culture expanded in vitro and encapsulated in alginate beads, were pre-treated with IL1β (10 ng/ml) for 24 hours, then with WJ-Exos at 10, 50 and 100 µg/ml. Cells with growth medium were used as control. We examined: i) cell proliferation and viability (flow cytometry), ii) nitrite production (Griess) iii) glycosaminoglycan (GAG) amount (DMBB), iv) histological staining for extracellular matrix (ECM) analysis and v) gene expression levels of catabolic and anabolic genes (qPCR). The investigations were performed in triplicate for each donor. One-way ANOVA analysis was used to compare the groups under exam and data were expressed as mean ± S.D. A dose dependent increase in hNPCs proliferation was noticed at all exos concentrations under study. Cell death decreased significantly in WJ-Exos 50 µg/ml samples (p ≤ 0,05) compared to IL1β treated hNPCs. Nitrite production was significantly attenuated at 10µg/ml of WJ-Exos (p ≤ 0,01). GAG content and histological analysis showed a difference in ECM synthesis between treated and untreated hNPCs (p ≤ 0,05). Catabolic and inflammatory markers were modulated by WJ-Exos at 100 µg/ml concentration (p ≤ 0,05) whereas 10 µg/ml group increased anabolic gene expression levels (p ≤ 0,05). These findings offer new opportunities for the potential use of exosomes as an attractive alternative cell-free strategy of IDD. WJ-MSC exosomes ameliorate hNPCs growth and viability, attenuate ECM degradation and oxidative stress-related IDD progression after IL1β stimulation. Financial support was received from the “iPSpine” and “RESPINE” Horizon 2020 projects.
Mesenchymal stem cells (MSC) are multipotent cells that possess regenerative functions that are of interest for in osteoarticular diseases such as osteoarthritis (OA). These functions are thought to be primarily mediated by mediators released within extracellular vesicles (EV). The aim of this study was to compare the immunomodulatory effects of two major types of EV, exosomes and microparticles, secreted by MSCs. EV subsets were isolated from murine primary MSCs by ultracentrifugation. Size and structure were evaluated by Dynamic Light Scattering and electron microscopy. Expression of membrane and endosomal markers was tested by flow cytometry. Proliferation of murine splenocytes was quantified after 72h of incubation with EVs after CFSE-labelling. Phenotypic analysis of T lymphocyte subpopulations was also performed by flow cytometry.