Advertisement for orthosearch.org.uk
Results 1 - 20 of 99
Results per page:
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 43 - 43
1 Mar 2009
Biant L Bruce W Walker P Herrmann S Walsh W
Full Access

Intro: Total knee replacement (TKR) manufacturers offer the option of high flexion tibial tray inserts. The polyethylene is narrower posteriorly than the standard insert and comes with the theoretical risk of reduced longevity due to thinner implant. This trial studied both the intra-operative and post-operative difference in knee flexion. Method: 100 consecutive patients undergoing posterior stabilized Genesis II TKR with Brainlab navigation were studied. The flexion of each knee was assessed per-operatively using the Brainlab navigation system for both the high flex and standard tibial insert trials. Patients were then randomized to receive either a high flex or standard definitive implant and the knee flexion measured clinically with a goniometer six months post op. Results: Intra-operatively the high flexion insert trial flexed more than the standard flex option by 3.2 degrees. Clinically at six months post op there was no difference in knee flexion between the two groups. Conclusion: There is no clinical difference in knee flex-ion at six months post-op in patients with a high flex or standard tibial insert. However, we believe that in certain technical circumstances the high flex option is a valuable option for the surgeon to have available


The objective of this study was to evaluate the kinematics of a high-flexion, posterior-stabilized total knee arthroplasty (TKA) in weight-bearing, deep knee bending motion. Fifteen patients implanted with the Legacy Posterior Stabilized Flex (8; mobile bearing and 7; fixed bearing), 18 patients with Scorpio NRG, and 8 patients with PFC sigma RP-F were examined during a deep knee bending motion using fluoroscopy. Femorotibial motion was determined using a 2-dimensional to 3-dimensional registration technique, which used computer-assisted design models to reproduce the position of metallic implants from single-view fluoroscopic images. The average flex-ion ranges of motion between the metallic implants were 120° with Legacy Flex, 125° with NRG and 121° with RP-F. The average rotation of the femoral component was 11° external rotation (ER) with Legacy Flex, 12° with NRG and 11° with RP-F. The mean kinematic pathways were early rollback, lateral pivot with ER, and bicondylar rollback with Legacy Flex, medial pivot with ER and bicondylar rollback with NRG and central pivot with ER and bicondylar rollback with RP-F. The in vivo kinematics was different due to the prosthesis designs to obtain weight-bearing deep knee bending motion.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 13 - 13
1 Jan 2016
Song IS Shin SY
Full Access

Purpose

The purpose of this study is toevaluate the clinical and radiologic results after high flexiontotal knee arthroplasty, Lospa®(Corentec Inc.) with 10mm cutting of posterior femoral condyle and LPS-Flex®(Zimmer Inc.) with 12.5mm cutting of posterior femoral condyle.(Fig. 1)

Materials and Methods

We prospectively compared 205 knees in 128 patients who underwent arthroplasty usingLospa®(groupA) and 63 knees in 48 patients who underwentarthroplasty using NexGen LPS-Flex®(group B) from September 2010 to March 2012 at Department of Orthopaedic Surgery, Sun General Hospital (Daejeon, Korea). Mean follow-up period was 33 months(24–42) in group A and 33months(23–45) in group B, and mean age was 69.5 in group A, 70.4 in group B. The radiologic analysis included the change of mechanical axis deviation and femoro-tibial angle, implant position (α,β,γ,δ)(Fig 2). The clinical results were evaluated according to Hospital for special surgery (HSS), Knee society score (KSS), and range of motion.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 35 - 35
17 Nov 2023
Timme B Biant L McNicholas M Tawy G
Full Access

Abstract. Objectives. Little is known about the impact of cartilage defects on knee joint biomechanics. This investigation aimed to determine the gait characteristics of patients with symptomatic articular cartilage lesions of the knee. Methods. Gait analyses were performed at the Regional North-West Joint Preservation Centre. Anthropometric measurements were obtained, then 16 retroreflective markers representing the Plug-in-Gait biomechanical model were placed on pre-defined anatomical landmarks. Participants walked for two minutes at a self-selected speed on a treadmill on a level surface, then for 2 minutes downhill. A 15-camera motion-capture system recorded the data. Knee kinematics were exported into Matlab to calculate the average kinematics and spatiotemporal parameters per patient across 20 gait cycles. Depending on the normality of the data, paired t-tests or Wilcoxon ranked tests were performed to compare both knees (α = 0.05). Results. 20 patients participated; one of whom has bilateral cartilage defects. All 20 data sets were analysed for level walking; 18 were analysed for downhill walking. On a level surface, patients walked at an average speed of 3.1±0.8km/h with a cadence of 65.5±15.3 steps/minute. Patients also exhibited equal step lengths (0.470±0.072m vs 0.471±0.070m: p=0.806). Downhill, the average walking speed was 2.85±0.5km/h with a cadence of 78.8±23.1 steps/minute and step lengths were comparable (0.416±0.09m vs 0.420±0.079m: p=0.498). During level walking, maximum flexion achieved during swing did not differ between knees (54.3±8.6° vs 55.5±11.0°:p=0.549). Neither did maximal extension achieved at heel strike (3.1±5.7° vs 5.4±4.7°:p=0.135). On average, both knees remained in adduction throughout the gait cycle, with the degree of adduction greater in flexion in the operative knee. However, differences in maximal adduction were not significant (22.4±12.4° vs 18.7±11.0°:p=0.307). Maximal internal-external rotation patterns were comparable in stance (0.9±7.7° vs 3.5±9.8°: p=0.322) and swing (7.7±10.9° vs 9.8±8.3°:p=0.384). During downhill walking, maximum flexion also did not differ between operative and contralateral knees (55.38±10.6° vs 55.12±11.5°:p=0.862), nor did maximum extension at heel strike (1.32±6.5° vs 2.73±4.5°:p=0.292). No significant difference was found between maximum adduction of both knees (15.87±11.0° vs 16.78±12.0°:p=0.767). In stance, differences in maximum internal-external rotation between knees were not significant (5.39±10.7° vs 6.10±11.8°:p=0.836), nor were they significant in swing (7.69±13.3° vs 7.54±8.81°:p=0.963). Conclusions. Knee kinematics during level and downhill walking were symmetrical in patients with a cartilage defect of the knee, but an increased adduction during flexion in the operative knee may lead to pathological loading across the medial compartment of the knee during high flexion activities. Future work will investigate this further and compare the data to a healthy young population. We will also objectively assess the functional outcome of this joint preservation surgery to monitor its success. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 93 - 93
11 Apr 2023
de Angelis N Beaule P Speirs A
Full Access

Femoro-acetabular impingement involves a deformity of the hip joint and is associated with hip osteoarthritis. Although 15% of the asymptomatic population exhibits a deformity, it is not clear who will develop symptoms. Current diagnostic imaging measures have either low specificity or low sensitivity and do not consider the dynamic nature of impingement during daily activities. The goal of this study is to determine stresses in the cartilage, subchondral bone and labrum of normal and impinging hips during activities such as walking and sitting down. Quantitative CT scans were obtained of a healthy Control and a participant with a symptomatic femoral cam deformity (‘Bump’). 3D models of the hip were created from automatic segmentation of CT scans. Cartilage layers were added so the articular surface was the mid-line of the joint. Finite element meshes were generated in each region. Bone elastic modulus was assigned element-by-element, calculated from CT intensity converted to bone mineral density using a calibration phantom. Cartilage was modelled as poroelastic, E=0.467 MPa, v=0.167, and permeability 3×10. -16. m. 4. /N s. The pelvis was fixed while rotations and contact forces from Bergmann et al. (2001) were applied to the femur over one load cycle for walking and sitting in a chair. All analyses were performed in FEBio. High shear stresses were seen near the acetabular cartilage-labrum junction in the Bump model, up to 0.12 MPa for walking and were much higher than in the Control. Patient-specific modelling can be used to assess contact and tissue stresses during different activities to better understand the risk of degeneration in individuals, especially for activities that involve high hip flexion. The high stresses at the cartilage labrum interface could explain so-called bucket-handle tears of the labrum


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 112 - 112
1 Mar 2012
Biant L Bruce W Walker P Herrmann S Walsh W
Full Access

‘High flexion’ polyethylene tibial tray inserts are available from total knee replacement (TKR) manufacturers. There is currently no published data available that examines how much extra knee flexion these new implants give or if there are any wear consequences for the change in design. The high flexion inserts are narrower posteriorly than standard inserts and have chamfers anteriorly and on the post in cruciate sacrificing designs. This prospective randomised controlled trial of 100 patients undergoing posterior stabilised TKR compared knee flexion, measured intra-operatively by a computer navigation system, of the standard and high flexion trial inserts in the same knee. Patients were then randomised to receive either a standard or ‘high flexion’ definitive component and the stability assessed. The post-operative knee flexion of all patients was measured at six months. High flexion inserts did not give significantly more knee flexion than standard inserts either per-operatively at the trial insert stage, or at six months post-op and resulted in marginally more anterior draw. The average per-operative difference in flexion between standard and high flex inserts measured in the same knee was 3.2° (range -4-18°) The average knee flexion at 6 months post op was 106° for both groups. The average change in knee flexion comparing pre and post op was 2.3° for the high flex group and 0.6° for the standard insert group. Laboratory Tek scan contact pressure analysis at the surface of the standard and high flexion designs was not significantly different, but the thinner polyethylene of the high flexion design raises questions about wear characteristics. High flexion polyethylene inserts are probably not justified in terms of improved knee flexion, but may be a useful option in certain technical circumstances during TKR such as patella baja or if the patella impinges on the post in deep flexion


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 42 - 42
1 Mar 2021
Williams S Jones A Wilcox R Isaac G Traynor A Board T Williams S
Full Access

Abstract. Objectives. Impingement in total hip replacements (THRs), including bone-on-bone impingement, can lead to complications such as dislocation and loosening. The aim of this study was to investigate how the location of the anterior inferior iliac spine (AIIS) affected the range of motion before impingement. Methods. A cohort of 25 CT scans (50 hips) were assessed and nine hips were selected with a range of AIIS locations relative to the hip joint centre. The selected CT Scans were converted to solid models (ScanIP) and THR components (DePuy Synthes) were virtually implanted (Solidworks). Flexion angles of 100⁰, 110⁰, and 120⁰ were applied to the femur, each followed by internal rotation to the point of impingement. The lateral, superior and anterior extent of the AIIS from the Centre of Rotation (CoR) of the hip was measured and its effect on the range of motion was recorded. Results. There was found to be a significant (p<0.05) inverse relationship between the ROM of the THR and the lateral measure of the AIIS. Of the three measures, the lateral AIIS measure showed the strongest relationship with ROM to impingement (R=0.73) with the anterior and superior measures resulting in R values of 0.41 and 0.56 respectively. For every millimetre lateral the AIIS location, there was typically a loss of 1.2° of range of motion. With increasing lateralisation, the AIIS was positioned more directly over the femur, thereby reducing the ROM in the THR during high flexion positions. No soft tissue was included in the models which would have affected the ROM. Conclusions. The results from this study have shown that the lateral measure of the AIIS could be a predictor for bone-on-bone impingement. To build confidence, wider study of AIIS location variation is needed, as well as analysis under impingement prone activities of daily living. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 69 - 69
1 Jan 2013
Hanusch B Gregg P Hui A
Full Access

Introduction. High flexion knee arthroplasties have been designed to allow up to 155 degrees flexion and enable high flexion activities such as kneeling and squatting. To date randomised controlled trials have shown no difference in range of movement (ROM) between high flexion and standard designs. Objectives. The aim of this study was to determine if there is a difference in functional outcome and ROM between the standard and high flexion design of the PFC Sigma TKA system. Methods. 84 patients with the diagnosis of osteoarthritis undergoing primary total knee arthroplasty were randomised to receive either a PFC Sigma or PFC Sigma RP-F total knee arthroplasty. ROM, Oxford Knee Score, Knee Society Score, Patella score and SF-12v2 were assessed independently before and at one year after surgery. Patients were blinded to the implant they received. Results. 42 patients in each group were included in this study and underwent surgery. 77 patients (92%) completed their one-year follow-up. There was no statistically significant difference in preoperative scores between groups. At one year there was a statistically significant difference in ROM between the groups with a mean of 105 degrees in the PFC Sigma and 114 degrees in the PFC Sigma RP-F group (p=0.01). There was also a statistically significant difference in flexion with 106 degrees and 115 degrees respectively (p=0.007). The difference in improvement in ROM and flexion was also statistically significant between the groups (p=0.009 and p=0.008). There was no statistically significant difference in any of the functional outcome scores. Conclusions. This is the first randomised controlled trial to show a statistically significant difference in ROM and flexion between a standard and a high flexion design TKA. Further follow-up will be carried out to determine if these differences persist over time and to evaluate the long-term survival of the different designs


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 102 - 102
1 May 2012
Campbell R Dalziel R
Full Access

Increasingly, high flexion components have been touted by the industrial manufacturers of them as the implants of choice for routine total knee replacement (TKR). An acceptable flexion arc is obtainable in most patients through various intra-operative techniques; however, the importance of obtaining high flexion—which we define as greater than 120 degrees—is unclear. In our pilot study, a review was undertaken involving 60 of the senior authors patients who attained greater than 120 degrees of flexion after receiving an implant said to be high flexion based on the presence of both a rotating platform as well as a conforming cam-and-post third condylar space. Despite the achievement of both high flexion and impressive patient satisfaction, no functional benefits were observed—an observation that is supported in the current literature. We will explore possible reasons for this discord and note that most patients did not express the desire to regularly perform high flexion activities such as kneeling, squatting and stooping on a daily basis. Our results and evaluation of the literature lead us to question the importance placed upon the achievement of the maximum possible post-operative flexion arc as well as the importance placed in the ability to perform high flexion activities. This, in turn, calls into question the validity of many of the currently accepted outcomes measures used to post-operatively evaluate total knee replacements


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 5 - 5
1 Mar 2021
Mohtajeb M Cibere J Zhang H Wilson D
Full Access

Femoroacetabular impingement (FAI) deformities are a potential precursor to hip osteoarthritis and an important contributor to non-arthritic hip pain. Some hips with FAI deformities develop symptoms of pain in the hip and groin that are primarily position related. The reason for pain generation in these hips is unclear. Understanding potential impingement mechanisms in FAI hips will help us understand pain generation. Impingement between the femoral head-neck contour and acetabular rim has been proposed as a pathomechanism in FAI hips. This proposed pathomechanism has not been quantified with direct measurements in physiological postures. Research question: Is femoroacetabular clearance different in symptomatic FAI hips compared to asymptomatic FAI and control hips in sitting flexion, adduction, and internal rotation (FADIR) and squatting postures?. We recruited 33 participants: 9 with symptomatic FAI, 13 with asymptomatic FAI, and 11 controls from the Investigation of Mobility, Physical Activity, and Knowledge Translation in Hip Pain (IMAKT-HIP) cohort. We scanned each participant's study hip in sitting FADIR and squatting postures using an upright open MRI scanner (MROpen, Paramed, Genoa, Italy). We quantified femoroacetabular clearance in sitting FADIR and squatting using beta angle measurements which have been shown to be a reliable surrogate for acetabular rim pressures. We chose sitting FADIR and squatting because they represent, respectively, passive and active maneuvers that involve high flexion combined with internal/external rotation and adduction/abduction, which are thought to provoke impingement. In the squatting posture, the symptomatic FAI group had a significantly smaller minimum beta angle (−4.6º±15.2º) than the asymptomatic FAI (12.5º ±13.2º) (P= 0.018) and control groups (19.8º ±8.6º) (P=0.001). In the sitting FADIR posture, both symptomatic and asymptomatic FAI groups had significantly smaller beta angles (−9.3º ±14º [P=0.010] and −3.9º ±9.7º [P=0.028], respectively) than the control group (5.7º ±5.7º). Our results show loss of clearance between the femoral head-neck contour and acetabular rim (negative beta angle) occurred in symptomatic FAI hips in sitting FADIR and squatting. We did not observe loss of clearance in the asymptomatic FAI group for squatting, while we did observe loss of clearance for this group in sitting FADIR. These differences may be due to accommodation mechanisms in the active, squatting posture that are not present in the passive, sitting FADIR posture. Our results support the hypothesis that impingement between the femoral head-neck contour and acetabular rim is a pathomechanism in FAI hips leading to pain generation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIX | Pages 101 - 101
1 Jul 2012
Nutton R Wade F Lawson G van der Linden M
Full Access

High flexion designs are intended to provide a greater range of knee flexion and possibly improve flexion in stiff knees. This study assessed the effects of two implant designs. A posterior stabilised high flexion mobile bearing (MB) design vs a cruciate retaining standard fixed bearing (FB) design. The aim of this study was to assess whether implant design has an effect on the functional outcome one year after total knee arthroplasty (TKA). Methods. Ninety patients with knee osteoarthritis on the waiting list for unilateral TKA were recruited and randomly allocated to either the MB or FB group. Patients were assessed between one and four weeks before, and one year after TKA. Primary outcome was knee flexion during high flexion activities of daily living such as stair ascending and descending and squatting as measured using gait analysis. Knee flexion in long sitting using a manual goniometer and the WOMAC were also recorded. Two sample t-tests were used to investigate statistical differences between the two groups pre- and postoperatively. Results. Average age was 69 years. Thirty-three received the MB design and 39 the FB design. Age, gender balance and pre-operative flexion (112 and 113 degrees in the FB and MB groups respectively) were the same in both groups. There were no statistically significant differences in post-operative knee flexion during functional activities. Knee flexion in sitting and the stiffness and function components of the WOMAC were also similar between the two groups (p>0.05). However, post-operatively the WOMAC pain component was slightly higher in the MB group (4.2 vs 2.4 points, p<0.05). Conclusion. In our patient group with a mean pre-operative flexion of 112.7 degrees, the high flexion mobile bearing design did not improve knee flexion during high flexion functional activities of daily living


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 60 - 60
1 Apr 2019
Siggelkow E Bandi M Blatter I
Full Access

Introduction. Total-knee-arthroplasty (TKA) is used to restore knee function and is a well-established treatment of osteoarthritis. Along with the widely used fixed bearing TKA design, some surgeons opt to use mobile bearing designs. The mobile-bearing TKA is believed to allow for more freedom in placement of the tibial plate, greater range of motion in internal-external (IE) rotation and greater constraint through the articular surface. This current study evaluates 1) the kinematics of a high constraint three condyle mobile bearing TKA, 2) the insert rotation relative to the tibia, and 3) compares them with the intact knee joint kinematics during laxity tests and activities-of-daily-living (lunge, level walking, stairs down). We hypothesize that 1) in contrast to the intact state the anterior-posterior (AP) stability of the implanted joint increases when increasing compression level while 2) maintaining the IE mobility, and that 3) the high constraint does not prevent differential femorotibial rollback during lunge. Methods. Six fresh-frozen human cadaveric knee joints with a mean donor age of 64.5 (±2.4) years and BMI of 23.3 (±7.3) were tested on a robot (KR140, KUKA) in two different states: 1) intact, 2) after implantation of a three condyle mobile bearing TKA. The tibia plateau and the insert of each tested specimen were equipped with a sensor to measure the insert rotation during testing. Laxity tests were done at extension and under flexion (15°, 30°, 45°, 60° 90°, 120°) by applying subsequent forces in AP and medial-lateral (ML) of ±100N and moments in IE and varus-valgus (VV) rotation (6Nm/4Nm, 12 Nm/-). Testing was performed under low (44N) and weight bearing compression (500N). Loading during the lunge, level walking and stairs descent activity was based on in-vivo data. Resulting data was averaged and compared with the kinematics of the intact knee. Results. Increasing the joint compression resulted in a 90% reduced AP laxity (increased stability) for the implanted case while the intact knee laxity stayed similar. In high compression the implanted IE mobility was reduced by 45% for low and mid flexion angles and by 20% for high flexion angles, while the intact knee IE mobility was reduced by 30% at low and mid flexion and 20% at high flexion. The trend of the rollback behaviour was similar for the implanted and intact joints and showed higher lateral than medial rollback (Figure 3 A). The average insert-rotation was highest during level walking (+ 5° to −2.5°) and lowest during lunge (−3.5° to 2.5° over flexion). Conclusion. The established hypotheses were supported by the above listed results. Increasing the joint compression in the mobile bearing design stabilized the knee in the AP direction and maintained the IE mobility similar to the intact knee. This can be directly related to the design of the TKA articular surface, which has a high impact on constraint as soon as the joint is loaded. However, the high constraint of the TKA did not prevent differential rollback


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 403 - 403
1 Apr 2004
Crowninshield RD Patmore AM Tanamal L Blakemore DM
Full Access

A total knee design has been developed to support high flexion requirements of post-total knee replacement lifestyles. The extent of flexion, following total knee replacement, is influenced by relative femoral tibial kinematics, posterior knee soft tissue impingement, patella and patellar tendon tracking, preoperative knee flexion, and postoperative physical therapy. A new implant design incorporates features to prevent posterior tibial displacement in high flexion, improved conformity of the femoral/tibial articular surface contact to 155 degrees of flexion, greater femoral/tibial articular surface contact area in high flexion, and a shortened patellar tendon pathway. The requirement for tibial internal-external rotation during some knee flexion activity is accommodated by a rotating tibial poly-ethylene option within the implant system. Laboratory tests indicate the achievement of greater articular surface contact in high flexion conditions through extending the posterior femoral condyle curvature and accommodating the tibial polyethylene articular surface. Joint simulator testing indicates improved wear performance of the high flexion design. A prospective controlled multicenter clinical trial has been initiated to evaluate this high flexion implant design along with surgical techniques and post-surgery physical therapy developed to support patient achievement of high knee flexion following total knee arthroplasty


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 81 - 81
1 May 2016
Kang K Trinh T Jang Y Yoo O Lee M Lim D
Full Access

Introduction. Revision total knee arthroplasy (TKA) has been often used with a metal block augmentation for patients with poor bone quality. However, bone resorption beneath metal block augmentation has been still reported and little information about the reasons of the occurrence of bone resorption is available. The aim of the current study is to identify a possibility of the potential occurrence of bone resorption beneath metal block augmentation, through evaluation of strain distribution beneath metal block augmentation in revision TKA with metal block augmentation, during high deep flexion. Materials and Method. LOSPA, revision TKA with a metal block augmentation (Baseplate size #5, Spacer size #5, Stem size Φ9, L30, Augment #5 T5) was considered in this study. For the test, the tibia component of LOSPA was implanted to the tibia sawbone (left, #3401, Sawbones EuropeAB, Malmö, Sweden), which was corresponded to a traditional TKR surgical guideline. The femoral component of LOSPA was mounted to a customized jig attached to the Instron 8872 (Instron, Norwood, MA, USA), which was designed specially to represent the angles ranged from 0° to 140° with consideration of a rollback of knee joint (Figure. 1). Here, a compressive load of 1,600N (10N/s) was applied for each angle. Strain distribution was then measured from rossete strain gauge (Half Bridge type, CAS, Seoul, Korea) together (Figure 1). Results and Discussions. The strain distribution on the cortical bone of the tibia was shown in Figure 2. The results showed that the strains on the posterior region were gradually increased from extension to high deep of the knee joint and generally larger than the other regions. In contrast to the results on the posterior region, the strains on the medial region were gradually decreased after 60° or 90° flexion position and relatively lower than the other regions. Particularly, the strains on the medial region were generally lower than 50–100 µstrain, which is known as critical value range able to inducing bone resorption, during high deep flexion. This fact indicate that a possibility of the potential bone resorption occurrence in revision TKA used with a metal block augmentation may be relatively increased in patients who are frequently exposed to a personal lifestyle history with the loading conditions of the high flexion. This study may be valuable by identifying for the first time a possibility of the potential bone resorption occurrence through evaluation of the strain distribution beneath metal block augmentation in revision TKA used with a metal block augmentation during high deep flexion. Conclusion. A possibility of the potential bone resorption occurrence in revision TKA used with a metal block augmentation may be dependent on loading patterns applied on the knee joint related to personal lifestyle history. Particularly, it may be relatively increased in patients who are frequently exposed to a personal lifestyle history with the loading conditions of the high flexion. Acknowledgements. This study was supported by a grant from the New Technology Product Evaluation Technical Research project, Ministry of Food and Drug Safety (MFDS), Republic of Korea


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 84 - 84
1 May 2016
Trinh T Kang K Lim D Yoo O Lee M Jang Y
Full Access

Introduction. Revision total knee arthroplasty (TKA) has been often used with a metal block augmentation for patients with poor bone quality. However, bone defects are frequently detected in revision TKA used with metal block augmentation. This study focused on identification of a potential possibility of the bone defect occurrence through the evaluation of the strain distribution on the cortical bone of the tibia implanted revision TKA with metal block augmentation, during high deep flexion. Materials and Methods. Composite tibia finite element (FE) model was developed and revision TKA FE model with a metal block augmentation (Baseplate size #5 44AP/67ML, Spacer size #5 44AP/67ML, Stem size Φ9, L30, Augment #5 44AP/67ML thickness 5mm) was integrated with the composite tibia FE model. 0°, 30° 60°, 90°, 120° and 140° flexion positions were then considered with femoral rollback phenomenon [Fig 1.A]. A compressive load of 1,600N through the femoral component was applied to the composite tibia FE model integrated with the tibia component, sharing by the medial and lateral condyles, simulating a stance phase before toe-off [Fig 1.B]. Results and Discussions. The strain distribution on the cortical bone of the tibia was shown in [Fig 2]. The results showed that the strains on the posterior region were gradually increased from extension to high deep of the knee joint and generally larger than the other regions. This fact was favorably corresponded to the femoral rollback phenomenon in the knee joint, showing a good accuracy of our FE model. In contrast to the results on the posterior region, the strains on the medial region were gradually decreased after 60° or 90° flexion position and relatively lower than the other regions. Particularly, the strains on the medial region were generally lower than 50–100 µstrain, which is known as critical value range able to inducing bone loss, during high deep flexion. This fact indicate that a potential possibility of bone defect occurrence in revision TKA used with a metal block augmentation may be relatively increased in patients who are frequently exposed to a personal lifestyle history with the loading conditions of the high flexion. This study may be valuable by identifying for the first time a potential possibility of the bone defect occurrence through evaluation of the strain distribution beneath metal block augmentation in revision TKA used with a metal block augmentation during high deep flexion. Conclusions. A potential possibility of bone defect occurrence in revision TKA used with a metal block augmentation may be dependent on loading patterns applied on the knee joint related to personal lifestyle history. Particularly, it may be relatively increased in patients who are frequently exposed to a personal lifestyle history with the loading conditions of the high flexion. Acknowledgements. This study was supported by a grant from the New Technology Product Evaluation Technical Research project, Ministry of Food and Drug Safety (MFDS), Republic of Korea


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 2 - 2
1 Jun 2012
Acker S Kutzner I Bergmann G Deluzio K Wyss U
Full Access

Accurate in vivo knee joint contact forces are required for joint simulator protocols and finite element models during the development and testing of total knee replacements (Varadarajan et al., 2008.) More accurate knowledge of knee joint contact forces during high flexion activities may lead to safer high flexion implant designs, better understanding of wear mechanisms, and prevention of complications such as aseptic loosening (Komistek et al., 2005.) High flexion is essential for lifestyle and cultural activities in the developing world, as well as in Western cultures, including ground-level tasks and chores, prayer, leisure, and toileting (Hemmerich et al., 2006.) In vivo tibial loads have been reported while kneeling; but only while the subject was at rest in the kneeling position (Zhao et al., 2007), meaning that the loads were submaximal due to muscle relaxation and thigh-calf contact support. The objective of this study was to report the in vivo loads experienced during high flexion activities and to determine how closely the measured axial joint contact forces can be estimated using a simple, non-invasive model. It provides unique data to better interpret non-invasively determined joint-contact forces, as well as directly measured tiobiofemoral joint contact force data for two subjects. Two subjects with instrumented tibial implants performed kneeling and deep knee bend activities. Two sets of trials were carried out for each activity. During the first set, an electromagnetic tracking system and two force plates were used to record lower limb kinematics and ground reaction forces under the foot and under the knee when it was on the ground. In the second set, three-dimensional joint contact forces were directly measured in vivo via instrumented tibial implants (Heinlein et al., 2007.) The measured axial joint contact forces were compared to estimates from a non-invasive joint contact force model (Smith et al., 2008.). The maximum mean axial forces measured during the deep knee bend were 24.2 N/kg at 78.2° flexion (subject A) and 31.1 N/kg at 63.5° flexion (subject B) during the deep knee bend (Figure 1.) During the kneeling activity, the maximum mean axial force measured was 29.8 N/kg at 86.8° flexion (subject B.) While the general shapes of the model-estimated curves were similar to the directly measured curves, the axial joint contact force model underestimated the measured contact forces by 7.0 N/kg on average (Figure 2.) The most likely contributor to this underestimation is the lack of co-contraction in the model. The study protocol was limited in that data could not be simultaneously collected due to electromagnetic interference between the motion tracking system and the inductively powered instrumented tibial component. Because skin-mounted markers were used, kinematics may be affected by skin motion artefacts. Despite these limitations, this study presents valuable information that will advance the development of high flexion total knee replacements. The study provides in vivo measurements and non-invasive estimates of joint contact forces during high flexion activities that can be used for joint simulator protocols and finite element modeling


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 69 - 69
1 May 2016
Jung K Kumar R Lee S Ong A Ahn H Park H
Full Access

Introduction. Positive expectations can increase compliance with treatment and realistic expectations may reduce postoperative dissatisfaction. Recently there are articles regarding expectations of patients from their TKA in western literature and only few articles based on Korean populations which don't encompass the whole spectrum of expectations in Korean patients. In all those articles based on pre-operative expectation, results were applied to whole expectation category uniformly not differentially. We aimed to document the pre-operative expectations in Korean patients undergoing total knee replacement using an established survey form and to determine whether expectations were influenced by socio-demographic factors and socio-demographic factors influences expectation items in particular category uniformly or differentially. Methods. Expectations regarding 19 items in the Knee Replacement Expectation Survey form were investigated in 228 patients scheduled for total knee replacement. The levels and distribution patterns of individual and summated expectation of five expectation categories; relief from pain, baseline activity, high flexion activity, social activity and psychological wellbeing, constructed from the 19 items were assessed. Univariate analyses and Binary logistic regression were performed and analyzed to examine the association of expectations with the socio-demographic factors. Results. The top five expectations among individual items were: improvement in walking ability, relief from pain, ascending and descending stairs, improvement in changing position and improvement in daily activity, respectively. Among the five expectation categories, relief from pain was ranked the highest, followed by restoration of baseline activity, ability to perform high flexion activities, psychological well-being and ability to participate in social activities respectively. Conclusion. There was a high expectation of restoration of walking ability, relief from pain and high flexion activity, whereas the expectation was more variable for psychological well-being and social activities. An age of < 65years, being employed, male gender, previous participation in high level sports activity, less income were all found to be significantly associated with higher expectations in social activity category whereas in baseline category, pain relief category and psychological well being category there are no significantly associated socio-demographic factors found, which shows these are the expectation items/categories which don't depend on socio-demographic factors and are highly expected by all patients undergoing TKA in our study. We also found that Socio-demographic factors influence individual expectation items in particular category differentially not uniformly hence results of individual items don't reflect the whole category or vice versa


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 128 - 128
1 Dec 2013
Moon Y Lim H Ko KR Lee KH So S Seo J
Full Access

Background:. The safety implications of achieving high flexion after TKA and the use of high flexion prostheses remain issues of concern. It is possible that different designs have different clinical and radiological results and complications, such as, early aseptic loosening. However, little information is available on the clinical results of TKAs performed using single-radius, high-flex posterior stabilized design. Accordingly, this study was undertaken to document results of single-radius, high-flex posterior stabilized TKAs with minimum 7-year follow-up. Methods:. From April 2003 to February 2006, 308 patients (455 knees) underwent TKA using single-radius, high-flex posterior stabilized design and among those patients, 251 patients (388 knees) included in this study who were able to be followed up for a minimum 7 year. Clinical results were evaluated using Knee Society Knee scores (KSKS) and Knee Society Function scores (KSFS) at last follow-up. The passive knee flexion was measured using a goniometer before and after surgery. The survival rate of the implants and implant-specific complications such as osteolysis or loosening were investigated. The osteolysis or loosening around the components was recorded according to the Knee Society Radiological scoring System. Results:. Mean Knee Society Knee score improved from 48.2 preoperatively to 96.8 postoperatively and mean Function score improved from 49.7 preoperatively to 74.2 postoperatively, respectively. The average range of motion (ROM) improved from 112.7° preoperatively to 131.5° postoperatively. Postoperative mechanical axis deviation (MAD) was within −3° to 3°, in 316 knees (81.4%). Non-progressive osteolysis was observed at zone 4 of the femoral component in eight knees (2.06%), at zone 3 of the tibial component in one knee (0.26%), at zone 2 of the tibial component in two knees (0.52%), and at zone 1 of the tibial component in thirteen knees (3.35%) in anteroposterior view. Two cases were revised due to infection and recurrent hemarthrosis. However, no complications, like early aseptic loosening, that have been associated with high flexion designs were observed. Conclusions:. Clinical results for TKAs conducted using a single-radius, high-flex posterior stabilized design with a minimum 7-year follow-up were favorable. Furthermore, no high flexion implant-specific complications such as early aseptic loosening were encountered


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 317 - 317
1 Dec 2013
Gao B Angibaud L
Full Access

Introduction. Ability to accommodate increased range of motion is a design objective of many modern TKA prostheses. One challenge that any “high-flex friendly” prosthesis has to overcome is to manage the femorotibial contact stress at higher flexion angle, especially in the polyethylene tibial insert. When knee flexion angle increases, the femorotibial contact area tends to decrease thus the contact stress increases. For a high-flex design, considerations should be taken to control the contact stress to reduce the risk of early damage or failure on the tibial insert. This study evaluated the effect of femoral implant design on high flexion contact stress. Two prostheses from a same TKA family were compared – one as a conventional design and the other as a high-flex design. Methods. Two cruciate retaining (CR) prostheses from a same TKA product family were included in this study. The first is a conventional design for up to 125° of flexion (Optetrak CR, Exactech, USA). The second is a high-flex design for up to 145° of flexion (Logic CR, Exactech, USA). The high-flex design has a femoral component which has modified posterior condyle geometry (Figure 1), with the intent to increase femorotibial contact area and decrease contact stress at high flexion. Three sizes (sizes 1, 3, and 5) from each prosthesis line were included to represent the commonly used size spectrum. Contact stress was evaluated at 135° of flexion using finite element analysis (FEA). The CAD models were simplified and finite element models were created assuming all materials as linear elastic (Figure 2). For comparison purpose, a compressive force of 20% body weight was applied to the femoral component. The average body masses of sizes 1, 3 and 5 patients are 69.6 kg, 89.9 kg, and 106.3 kg based on the manufacture's clinical database. A nonlinear FEA solver was used to solve the simulation. Von Mises stress in the tibial insert was examined and compared between the two prostheses. Results. The high-flex design demonstrated lower tibial insert stresses compared to the conventional design, and the stress reduction is consistent across different sizes (Figure 3). The peak von Mises stress of the high-flex design was 8.6 MPa, 10.8 MPa, and 11.9 MPa for sizes 1, 3 and 5, representing a 40% to 60% decrease compared to those of the conventional design (14.3 MPa, 26.5 MPa, and 25.6 MPa respectively). Discussion/Conclusion. One limitation of the study was that no material nonlinearity was considered in the FEA, thus stress values above the yield strength of polyethylene could be over-estimated. However, as a qualitative comparison, the analysis demonstrated the effectiveness of the high-flex design on reducing tibial insert contact stress. Although the actual flexion angle of a CR TKA patient is not fully defined by the prosthesis and largely affected by the patient's anatomy and pre-operative range of motion, a lower contact stress at high flexion indicates a more forgiving mechanical structure and less risk for polyethylene damage when the patient is able to perform high flexion activities


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 45 - 45
1 Jan 2016
Hirokawa S Hagihara S Fukunaga M
Full Access

1. Introduction. Such a Total Knee Arthroplasty (TKA) that is capable of making high knee flexion has been long awaited for the Asian and Muslim people. Our research group has developed the TKA possible to attain complete deep knee flexion such as seiza sitting. Yet as seiza is peculiar to the Japanese, other strategies will be necessary for our TKA to be on the overseas market. Still it is impractical to prepare many kinds of modifications of our TKA to meet various demands from every country/region. To this end, we contrived a way to modularize the post-cum alignment of our TKA in order to facilitate the following three activities containing high knee flexion: praying for the Muslim, gardening or golfing for the Westerner, sedentary siting on a floor for the Asian. We performed simulation and experiment, such as a mathematical model analysis, FEM analysis and a cadaveric study, thereby determining the optimal combination of moduli for the above activities respectively. 2. Methods. We modularized the post-cum alignment by three parameters in three levels respectively (Fig.1). The shape of the post's sagittal section and the total shape of cum were unchanged. The three parameters for modularization were the post location which was shifted anterior and posterior by 5 mm from the neutral position, the post inclination which was inclined forward and backward by 5° from the vertical, and the radius of curvature of the post's horizontal section which was increased and decreased by 2 mm from the original value. It is crucial to decrease contact stress between the post and cum during praying for the Muslim and during gardening or golfing for the Westerner, which would be realized by choosing the optimal location and inclination of post when kneeling for the Muslim and when squatting for the Westerner respectively (Fig.2). As for the Asian, it is desirable for them to perform various kinds of sedentary sittings on a floor without difficulties, which would be facilitated by choosing the optimal radius of curvature value to increase range of rotation when the knee is in high-flexion (Fig.2). First we performed a mathematical model analysis to introduce the kinetic data during sit-to-stand activities. Then by using the above kinetic data we performed the FEM analysis to determine the contact stress between the post and cum during praying, gardening or golfing. Finally we carried out the cadaveric study to determine the range of rotation at high flexion of the knee. 3. Results and Discussion. The results of FEM analysis demonstrated that the best modular set for the activities for Muslim and Westerners were so that the post location should be shifted by 5 mm and the post inclination should not be applied (Fig.3). The results of cadaveric study demonstrated that the radius of horizontal curvature should be increased by 2mm so as to increase the range of rotation especially when the knee is in high flexion. The subjects for our future study are to verify the validities of the above results through our simulator tests