Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 44 - 44
1 Sep 2012
De Wilde L
Full Access

Background. There is no consensus on which glenoid plane should be used in total shoulder arthroplasty. Nevertheless, anatomical reconstruction of this plane is imperative for the success of a total shoulder arthroplasty. Methods. Three-dimensional reconstruction CT-scans were performed on 152 healthy shoulders. Four different glenoid planes, each determined by three surgical accessible bony reference points, are determined. The first two are triangular planes, defined by the most anterior and posterior point of the glenoid and respectively the most inferior point for the Saller's Inferior plane and the most superior point for the Saller's Superior plane. The third plane is formed by the best fitting circle of the superior tubercle and the most anterior and posterior point at the distal third of the glenoid (Circular Max). The fourth plane is formed by the best fitting circle of three points at the rim of the inferior quadrants of the glenoid (Circular Inferior). We hypothesized that the plane with normally distributed parameters, narrowest variability and best reproducibility would be the most suitable surgical glenoid plane. Results. No difference in position of the mean humeral center of rotation is found between the Circular Max and Circular Inferior plane (X=91.71degrees/X=91.66degrees p=0.907 and Y=90.83degrees /Y=91.7degrees p=0.054 respectively), while clear deviations are found for the Saller's Inferior and Saller's Superior plane (p < 0.001). The Circular Inferior plane has the lowest variability to the coronal scapular plane (p<0.001). Conclusion. This study provides arguments to use the Circular Inferior glenoid plane as preferred surgical plane of the glenoid. Level of evidence: Level II, Basic Science Study, Anatomical Survey


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 22 - 22
1 Dec 2013
Frankle M Cabezas A Gutierrez S Teusink M Santoni B Schwartz D
Full Access

Background:. Currently, there are a variety of different reverse shoulder implant designs but few anatomic studies to support the optimal selection of prosthetic size. This study analyzed the glenohumeral relationships of patients who underwent reverse shoulder arthroplasty (RSA). Methods:. Ninety-two shoulders of patients undergoing primary RSA for a massive rotator cuff tear without bony deformity or deficiency and 10 shoulders of healthy volunteers (controls) were evaluated using three-dimensional CT reconstructions and computer aided design (CAD) software. Anatomic landmarks were used to define scapular and humeral planes in addition to articular centers. After aligning the humeral center of rotation with the glenoid center, multiple glenohumeral relationships were measured and evaluated for linearity and size stratification. The correction required to transform the shoulder from its existing state (CT scan) to a realigned image (CAD model) was compared between the RSA and control groups. Size stratification was verified for statistical significance between groups. Generalized linear modeling was used to investigate if glenoid height, coronal humeral head diameter and gender were predictive of greater tuberosity positions. Results:. All 92 shoulders were grouped into three different categories based on glenoid height. The humeral head size, glenoid size, lateral offset, and inferior offset all increased linearly (r. 2. > 0.95), but the rate of increase varied (slopes range from 0.59 to 1.9). Translations required to normalize the shoulder joint were similar between healthy and pathologic cases except for superior migration. Glenoid height, coronal humeral head diameter and gender predicted the greater tuberosity position within 1.09 ± 0.84 mm of actual position in ninety percent of the patient population. Morphometric measurements for each stratified group were all found to be statistically significant between groups (p ≥ 0.05). Conclusion:. Patients who undergo RSA with minimal bony deformity have superior subluxation of the glenohumeral joint. Predicting the anatomic position of the greater tuberosity is dependent on gender, glenoid height and coronal humeral head diameter. This anatomic data provides a guide to avoid inadvertent mismatch of prosthetic and patient shoulder size. If the surgeon is able to measure glenoid height and coronal humeral head diameter preoperatively, accurate planning of the position of the greater tuberosity can be accomplished


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 74 - 74
1 Dec 2013
Henninger H Burks R Tashjian R
Full Access

Introduction:. Given that factors like center of rotation (COR), neck shaft angle, glenosphere diameter and component tilt alter the biomechanics of reverse total shoulder arthroplasty (rTSA), the performance of the total rTSA system is of interest. This study compared the composite performance of two rTSA systems that were designed around a medialized or lateralized glenohumeral COR. The objective was to quantify the following outcome measures: 1) COR & humeral position; 2) range of glenohumeral abduction; 3) force to abduct; and 4) range of internal (IR)/external (ER) rotation. Methods:. Seven pairs of shoulders were tested with a biomechanical shoulder simulator. Beads were implanted in the scapula and humerus to quantify bone positions with a fluoroscope. Spectra lines simulated the deltoid and the rotator cuff. Linear actuators simulated muscle excursion while load cells recorded applied force. Diode arrays were used to quantify arm position and calculate the humeral center of rotation. Native specimens were tested where a motion path was recorded from resting to peak glenohumeral abduction in the scapular plane. The trajectory was replayed and deltoid force vs. arm position was recorded. With the elbow flexed, the arm was articulated to maximal internal and external rotation to determine ROM limits due to impingement or soft tissue constraint. Specimens were implanted with a Tornier Aequalis Reversed Shoulder prosthesis (“A,” 36 mm glenosphere, 10° humeral retroversion, 9 mm poly insert – “medial”) or a DJO Surgical Reverse Shoulder Prosthesis (“R,” 32 mm, 30° retroversion, neutral insert/shell – “lateral”). Implants were randomized between shoulders in a pair. After implantation the test protocol was repeated. Paired-t tests (p ≤ 0.050) were adjusted with Holm's step-down correction for multiple comparisons. Results:. Joint COR shifted inferiorly (A = 7 ± 3 mm, R = 4 ± 2 mm) and medially (A = 19 ± 4 mm, R = 12 ± 3 mm) for both systems with respect to native (p≤0.007, between systems p≤0.037). All humeri shifted inferiorly with respect to native (Fig. 1, p = 0.000, between systems p = 0.718). The RSP maintained a nearly anatomic medial/lateral humerus position, whereas the Aequalis medialized the humerus (p = 0.007). Both rTSA systems showed adduction deficit versus native arms (Fig. 2, p ≤ 0.046). Peak passive abduction, IR and ER were not significantly different between systems (p ≥ 0.113) or with respect to native (p ≥ 0.085). Deltoid force required to elevate the arm decreased ∼25% after rTSA (p ≤ 0.049), but did not differ between systems (p ≥ 0.117). Discussion:. Understanding the implications of implant configuration is imperative to improving implant design and optimizing patient outcomes. As tested, the configurations represent over 70% of respective clinical cases. The systems varied in COR offset, humeral component version/tilt, glenosphere placement, and insert thickness, yet few kinematic differences arose. The RSP COR was more lateral than the Aequalis, yet both were medial to native. Accordingly, both systems provided a similar mechanical advantage by reducing the abduction forces. The RSP had the least adduction deficit, which could indicate increased inferior clearance around the more lateral COR. Inferior and medial humerus shift could negatively impact external rotation capability by moving the posterior cuff line of action below the COR and reducing muscle tension (Fig. 3)