SOX genes comprise a family of transcription factors characterised by a conserved HMG-box domain that confer pleiotropic effects on cell fate and differentiation through binding to the minor groove of DNA. Paracrine regulation and contact-dependant Notch signalling has been suggested to modulate the induction of SOX gene expression. The objective of this study is to investigate the crosstalk between and preconditioning of mesenchymal stem cells (MSCs) with chondrocytes through comparing SOX gene expression in their co-culture and respective monocultures. Our study adopted an AMSC phenotype was evidenced by the expression of CD105, CD73, CD90 & heterogenous CD34 but not CD45, CD14, CD19 & HLA-DR in flow cytometry, and also differentiation into chondrogenic, osteogenic and adipogenic lineages with positive Alcian blue, Alizarin Red and Oil Red O staining. The expression of SOX5, SOX6, and SOX9 were greater in observed co-cultures than would be expected from an expression profile modelled from monocultures. The findings provides evidence for the upregulation of SOX family transcription factors expression during the co-culture of MSCs and chondrocytes, suggesting an active induction of chondrogenic differentiation and change of cell fate amidst a microenvironment that facilitates cell-contact and paracrine secretion. This provides insight into the chondrogenic potential and therapeutic effects of MSCs preconditioned by the chondrocyte secretome (or potentially chondrocytes reinvigorated by the MSC secretome), and ultimately, cartilage repair.
Millions of patients each year suffer from challenging non-healing bone defects secondary to trauma or disease (e.g. cancer, osteoporosis or osteomyelitis). Tissue engineering approach to non-healing bone defects has been investigated over the past few decades in a search for a novel solution for critical size bone defects. The success of the tissue engineering approach relies on three main pillars, the right type of cells; and appropriate scaffold; and a biologically relevant biochemical/ biophysical stimuli. When it comes to cells the mesodermal origin of mesenchymal stem cells and its well demonstrated multipotentiality makes it an ideal option to be used in musculoskeletal regeneration. For the presented set of experimental assays, fully characterised (passage 3 to 5)ovine adipose-derived mesenchymal stems cells (Ad-MSC) were cultured either in growth medium (GM) consisting of Dulbecco's Modification of Eagle's Medium (DMEM) supplemented with 10% (v/v) foetal bovine serum and 1% penicillin-streptomycin as a control or in osteogenic differentiation medium (DM), consisting of GM further supplemented with L- ascorbic acid (50 μg/ml), β-glycerophosphate (10 mM) and dexamethasone (100nM). Osteogenic differentiation was assessed biochemically by quantifying alkaline phosphatase (ALP) enzyme activity and alizarin red staining after 3, 7, 14 and 21 days in culture (where 1×105 cells/well were seeded in 24 well-plate, n=6/media type/ time point). Temporal patterns in osteogenic gene expression were quantified using real-time PCR for Runx-2, osteocalcin (OC), osteonectin (ON) and type 1 collagen (Col 1) at days 7, 15 and 21 (where 1×105 cells were seeded in T25 cell culture flasks for RNA extraction, n= 4 / gene/ media type/time point). The morphology of osteogenic cells was additionally evaluated by scanning electron microscopy (SEM) of cells seeded at low-density (1×102 cells) on glass coverslips for 2 weeks in GM or DM. The level of ALP activity of cells grown in osteogenic DM was significantly higher than the control growing in the standard growth medium (p ≤ 0.05) at days 3, 7 and 14. At 21 days there was a sharp drop in ALP values in the differentiating cells. Mineralisation, as evidenced by alizarin red staining, increased significantly by day 14 and then peaked at day 21. Quantitative real-time PCR confirmed early increases in Runx-2, Col 1 and osteonectin, peaking in the second week of culture, while osteocalcin peaked at 21 days of culture. Taken as a whole, these data indicate that ovine-MSCs exhibit a tightly defined pathway of initial proliferation and matrix maturation (up to 14 days), followed by terminal differentiation and mineralisation (days 14 to 21). SEM analysis confirmed the flattened, roughened appearance of these cells and abandoned extracellular matrix which resembled mature osteoblasts. Given the ready availability of adipose tissues, the use of Ad-MSCs as progenitors for bone tissue engineering applications is both feasible and reasonable. The data from this study indicate that Ad-MSCs follow a predictable pathway of differentiation that can be tracked using validated molecular and biochemical assays. Additional work is needed to confirm that these cells are osteogenic in vivo, and to identifying the best combination of scaffold materials and cell culture techniques (e.g. static versus dynamic) to accelerate or stimulate osteogenic differentiation for bone tissue engineering applications.
Intervertebral disc degeneration (IDD) affects more than 80% of the population and is often linked to a reduction of the proteoglycan content within the nucleus pulposus (NP). The nutritional decline and accumulation of degraded matrix products promote the inflammatory process favoring the onset of disease. Several regenerative approaches based on cell therapy have been explored. Recently, paracrine factors and extracellular vesicles (EVs) such as exosomes have been described to play a fundamental role in the cross-talk between mesenchymal stem cells (MSCs) and NP in the microenvironment. EVs vehicule different molecules: proteins, nucleic acids and lipids involved in intercellular communication regulating the homeostasis of recipient cells. Therefore, MSCs-derived exosomes are an interesting emerging tool for cell-free therapies in IDD. The aim of this study was to evaluate the Exosomes were isolated through a multistep ultracentrifugation of bone marrow-MSCs (BM-MSCs) conditioned media (CM), obtained by culturing BM-MSCs without fetal bovine serum (FBS) for 48 hours. Exosomal morphology was characterized by transmission electron microscope (TEM). The exosomes were quantified by bicinchoninic acid assay (BCA) and cryopreserved at –80 °C. hNPCs derived from surgical speciments digested with type II collagenase. After culture expansion TEM analysis confirmed the cup-shaped vescicles in our preparations. Gene expression levels resulted to be modulated by both exosomes and CM compared to controls. In addition, both treatments were capable to alter the inflammatory stimuli of IL-1b. Interestingly, exosomes were able to change anabolic and catabolic gene expression levels differently from CM. In our experimental conditions, both exosomes and CM from BM-MSCs could be an interesting alternative strategy in intervertebral disc regeneration, overcoming the costs and translational limits of cell therapy to the clinical practice.
Mesenchymal stem cells (MSCs) have been studied for the treatment of Osteoarthritis (OA), a potential mechanism of MSC therapies has been attributed to paracrine activity, in which extracellular vesicles (EVs) may play a major role. It is suggested that MSCs from younger donor compete with adult MSC in their EV production capabilities. Therefore, MSCs generated from induced pluripotent mesenchymal stem cells (iMSC) appear to provide a promising source. In this study, MSCs and iMSC during long term-expansion using a serum free clinical grade condition, were characterized for surface expression pattern, proliferation and differentiation capacity, and senescence rate. Culture media were collected continuously during cell expansion, and EVs were isolated. Nanoparticle tracking analysis (NTA), transmission electron microscopy, western blots, and flow cytometry were used to identify EVs. We evaluated the biological effects of MSC and iMSC-derived EVs on human chondrocytes treated with IL-1α, to mimic the OA environment. In both cell types, from early to late passages, the amount of EVs detected by NTA increased significantly, EVs collected during cells expansion, retained tetraspanins (CD9, CD63 and CD81) expression. The anti-inflammatory activity of MSC-EVs was evaluated in vitro using OA chondrocytes, the expression of IL-6, IL-8 and COX-2 was significantly reduced after the treatment with hMSC-derived EVs isolated at early passage. The miRNA content of EVs was also investigated, we identify miRNA that are involved in specific biological function. At the same time, we defined the best culture conditions to maintain iMSC and define the best time window in which to isolate EVs with highest biological activity. In conclusion, a clinical grade serum-free medium was found to be suitable for the isolation and expansion of MSCs and iMSC with increased EVs production for therapeutic applications.
Introduction There are 1 million cases of major skeletal defects :that occur worldwide each year that lead to significant morbidity and disability and currently require bone grafting as the main mode of treatment. Limitations of bone-grafting include donor site morbidity, reduced osseoinductivity and risk of pathogen transmission to the host. There is considerable interest in finding ways of differentiating mesenchymal stem cells down the osteoblastic lineage to form bone tissue. We hypothesized that there is an optimum strain that promotes differentiation of mesenchymal stem cells into osteoblasts. Methods: A bioreactor was developed that was capable of applying tensional forces across a culture strip in a graduated manner within a range of 1-4373me. Mesenchymal stem cells were grown on these strips and subjected to cyclical tensile strain at 1Hz. Cell morphology using Scanning Electron Microscopy, mineralization using specialized stains and expression of core binding factor1 (Cbfa1) was studied at various strain levels. Results: Scanning Electron Microscopy revealed classic osteoblastic cells in the regions subjected to tensile force, especially in the region where average strain was 1312me. X-ray microanalysis revealed calcium deposits on the strip, indicating osteoblastic differentiation. Cbfa1 expression was greatest in the region with an average strain 1312 me followed by a region on the strip subjected to just fluid shear without any tension. Cbfa1 expression was significantly greater in cells subjected to tensile forces than unstrained controls at all levels of strain tested (p<
0.05). Cbfa1 expression was further enhanced significantly by the addition of osteogenic factors (p<
0.05). Significantly greater mineralization (p<
0.05) occurred in the regions subject to tension with the greatest being in the region with an average strain of 1312 me. Conclusions: Mechanical tensile forces especially in the range of up to 2173me promote differentiation of
Introduction. Autologous Chondrocyte Implantation (ACI) is an effective surgical treatment for chondral defects. ACI involves arthrotomy for cell implantation. We describe the development of an intra-articular injection of cultured MSC, progressing from in-vitro analysis, through animal model, clinical and radiological outcome at five years follow up. Materials and Methods. We prospectively investigated sixteen patients with symptomatic ICRS grade III and IV lesions. These patients underwent cartilage repair using cultured mesenchymal stem cell injections and are followed up for five years. Results. Statistically significant clinical improvement was noted by two years and was sustained for five years of the study. At five years, mean Lysholm score was 80, compared to 44 pre-operatively. Symptomatic KOOS improved to 88 from 55. Subjective IKD Calso showed improvement from 42 to 76. On morphological MRI MOCART score was 76 and qualitative MRI showed the mean T2relaxation-times were 28 and 31 for their pair tissue and native cartilage respectively. Discussion. Cultured MSC provides a good number of uncommitted stem cells to the previously prepared chondral defects of the knee by “homing on” phenomenon. Cultured cells, suspended in serum can be delivered by an intra-articular injection. Conclusion. Use of cultured MSC is less invasive, avoids complications associated with arthrotomy, compared to ACI technique. Good clinical results were found to be sustained at five years of follow-up with a regenerate that appears like surrounding native cartilage. The use of Cultured
Summary. In this study, we challenged the current paradigm of human
Purpose: Athrophic non unions constitute a major problem in orthopaedic trauma. The main probably cause of atrophic non union is damage of the vascular system and dysfunctional regeneration of the vasculature at the area of the fracture. The most important hormonal pathway controlling angiogenesis is VEGF (Vascular Endothelial Growth Factor). The use of VEGF for enhancing bone healing in atrophic non unions could be a very promising solution for the future. An interesting alternative to the use of VEGF is the use of Erythropoietin (Epo). VEGF has been also reported to interact with Endothelial Progenitor Cells (EPCs). Our scope is to identify a possible new role for Epo as a valid substitute for VEGF through the clarification of the molecular and cellular pathways of fracture healing. Methods: A survey was conducted via internet (Med-line - Pubmed, Cochrane database, Scopus) and relevant textbooks. Results: It has been reported that Epo could induce increased chemotaxis, migration of
Purpose: The purpose of this study was to compare the effects of two types of stem/progenitor cells on the healing of critical sized bone defects in a rat model. Endothelial Progenitor Cells (EPCs), a novel cell type with previously demonstrated effects on angiogenesis in animal models of vascular disease, were compared to both a control group of no cell therapy, and a treatment group of
Mesenchymal stem cells (MSC) have been used for bone regenerative applications as an alternative approach to bone grafting. Selecting the appropriate source of MSC is vital for the success of this therapeutic approach. MSC can be obtained from various tissues, but the most used sources of MSC are Bone marrow (BMSC), followed by adipose tissue (ASC). A donor-matched comparison of these two sources of MSC ensures robust and reliable results. Despite the similarities in morphology and immunophenotype of donor-matched ASC and BMSC, differences existed in their proliferation and in vitro differentiation potential, particularly osteogenic differentiation that was superior for BMSC, compared to ASC. However, these differences were substantially influenced by donor variations. In vivo, although the upregulated expression of osteogenesis-related genes in both ASC and BMSC, more bone was regenerated in the calvarial defects treated with BMSC compared to ASC, especially during the initial period of healing. According to these findings, compared to ASC, BMSC may result in faster regeneration and healing, when used for bone regenerative applications.
Background: 70% of Breast Cancer patients develop metastatic bone deposits, predominantly spinal metasases. Adult
A promising application of Mesenchymal stem cells (MSCs) is the treatment of non-unions. Substituting bone grafts, MSCs are directly injected into the fracture gap. High cell viability seems to be a prerequisite for therapeutic success. Administration of the MSCs via injection creates shear stresses possibly damaging or destroying the cells. Aim of this study was to investigate the effect of the injection process on cell viability. MSCs were isolated and cultivated from femoral tissue of five subjects undergoing arthroplasty. Prior to injection, the cells were identified as MSCs. After dissolving to a concentration of 1 Million cells/ml, 1 ml of the suspension was injected through a cannula of 200 mm length and 2 mm diameter (14 G) with flow rates of 38 and 100 ml/min. The viability of the MSCs at different flow rates was evaluated by staining to detect the healthy cell fraction. It was analyzed statistically against a control group via the Kruskal-Wallis-test and for equivalence via the TOST procedure. Significance level was set to 5 %, equivalence margin to 20 %. The healthy cell fraction of the control group was 85.88 ± 2.98 %, 86.04 ± 2.53 % at 38 ml/min and 85.48 ± 1.64 % at 100 ml/min. There was no significant difference between the fraction of healthy cells (p = 0.99) for different volume flows, but a significant equivalence between the control group and the two volume flows (38 ml/min: p = 0.002, 100 ml/min: p = 0.001). When injecting MSC solutions, e.g. into a non-union, the viability of the injected cells does not deterioriate significant. The injecting technique is therefore feasible.
Aneurysmal bone cyst (ABC) of the spine is a locally aggressive benign lesion which can be treated by en bloc resection with wide margin to reduce the risk of local recurrence. To avoid morbidity associated with surgery, selective arterial embolization (SAE) can be considered the first-line treatment for ABCs of the spine. We previously introduced the use of autologous bone marrow concentrate (BMC) injection therapy to stimulate bone healing and regeneration in ABC of the spine. In this prospective study we described the clinical and radiological outcomes of percutaneous injection of autologous BMC in a series of patients affected by ABCs of the spine. Fourteen patients (6 male, 8 female) were treated between June 2014 and December 2019 with BMC injection for ABC of the spine. The mean age was 17.85 years. The mean follow up was 37.4 months (range 12–60 months). The dimension of the cyst and the degree of ossification were measured by Computed Tomography (CT) scans before the treatment and during follow-up visits. Six patients received a single dose of BMC, five patients received two doses and in three patients three doses of BMC were administered. The mean ossification of the cyst (expressed in Hounsfield units) increased statistically from 43.48±2.36 HU to 161.71±23.48 HU during follow-up time and the ossification was associated to an improvement of the clinical outcomes. The mean ossification over time was significantly higher in patients treated with a single injection compared to patients treated with multiple injections. No significant difference in ossification was found between cervical and non-cervical localization of the cyst. Moreover, the initial size of the cyst was not statistically associated with the degree of ossification during follow-up. The results of this study reinforce our previous evidence on the use of BMC as a valid alternative for spinal ABC management when SAE is contraindicated or ineffective. The initial size of the cyst and its localization does not influence the efficacy of the treatment. However, data suggest that BMC injection could be indicated as treatment of choice for spinal ABC in young adolescent women.
There is still no consensus on which concentration of mesenchymal stem cells (MSCs) to use for promoting fracture healing in a rat model of long bone fracture. To assess the optimal concentration of MSCs for promoting fracture healing in a rat model. Wistar rats were divided into four groups according to MSC concentrations: Normal saline (C), 2.5 × 106 (L), 5.0 × 106 (M), and 10.0 × 106 (H) groups. The MSCs were injected directly into the fracture site. The rats were sacrificed at 2 and 6 자 post-fracture. New bone formation [bone volume (BV) and percentage BV (PBV)] was evaluated using micro-computed tomography (CT). Histological analysis was performed to evaluate fracture healing score. The protein expression of factors related to MSC migration [stromal cell-derived factor 1 (SDF-1), transforming growth factor-beta 1 (TGF-β1)] and angiogenesis [vascular endothelial growth factor (VEGF)] was evaluated using western blot analysis. The expression of cytokines associated with osteogenesis [bone morphogenetic protein-2 (BMP-2), TGF-β1 and VEGF] was evaluated using real-time polymerase chain reaction. Micro-CT showed that BV and PBV was significantly increased in groups M and H compared to that in group C at 6 wk post-fracture (P = 0.040, P = 0.009; P = 0.004, P = 0.001, respectively). Significantly more cartilaginous tissue and immature bone were formed in groups M and H than in group C at 2 and 6 wk post-fracture (P = 0.018, P = 0.010; P = 0.032, P = 0.050, respectively). At 2 wk post fracture, SDF-1, TGF-β1 and VEGF expression were significantly higher in groups M and H than in group L (P = 0.031, P = 0.014; P < 0.001, P < 0.001; P = 0.025, P < 0.001, respectively). BMP-2 and VEGF expression were significantly higher in groups M and H than in group C at 6 wk postfracture (P = 0.037, P = 0.038; P = 0.021, P = 0.010). Compared to group L, TGF-β1 expression was significantly higher in groups H (P = 0.016). There were no significant differences in expression levels of chemokines related to MSC migration, angiogenesis and cytokines associated with osteogenesis between M and H groups at 2 and 6 wk post-fracture. The administration of at least 5.0 × 106 MSCs was optimal to promote fracture healing in a rat model of long bone fractures.
Osteoarthritis (OA) is a common age-related degenerative joint disease, affecting 7% of the global population, more than 500 million people worldwide. Exosomes from mesenchymal stem cells (MSCs) showed promise for OA treatment, but the insufficient biological targeting weakens its efficacy and might bring side effects. Here, we report the chondrocyte-targeted exosomes synthesized via click chemistry as a novel treatment for OA. Exosomes are isolated from human umbilical cord-derived MSCs (hUC-MSCs) using multistep ultracentrifugation process, and identified by electron microscope and nanoparticle tracking analysis (NTA). Chondrocyte affinity peptide (CAP) is conjugated on the surface of exosomes using click chemistry. For tracking, nontagged exosomes and CAP-exosomes are labeled by Dil, a fluorescent dye that highlights the lipid membrane of exosomes. To verify the effects of CAP-exosomes, nontagged exosomes and CAP-exosomes are added into the culture medium of interleukin (IL)-1β-induced chondrocytes. Immunofluorescence are used to test the expression of matrix metalloproteinase (MMP)-13. CAP-exosomes, compared with nontagged exosomes, are more easily absorbed by chondrocytes. What's more, CAP-exosomes induced lower MMP-13 expression of chondrocytes when compared with nontagged exosomes (p<0.001). CAP-exosomes show chondrocyte-targeting and exert better protective effect than nontagged exosomes on chondrocyte extracellular matrix. Histological and in vivo validation are now being conducted.
Stem cell therapy is an effective means to address the repair of large segmental bone defects. However, the intense inflammatory response triggered by the implants severely impairs stem cell differentiation and tissue regeneration. High-dose transforming growth factor β1 (TGF-β1), the most locally expressed cytokine in implants, inhibits osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and promotes tissue fibrosis, severely compromising the efficacy of stem cell therapy. Small molecule inhibitors of TGF-β1 can be used to ameliorate the osteogenic disorders caused by high concentrations of TGF-β1, but systemic inhibition of TGF-β1 function will cause strong adverse effects. How to find safe and reliable molecular targets to antagonize TGF-β1 remains to be elucidated. Orphan nuclear receptor Nr4a1, an endogenous inhibitory molecule of TGF-β1, suppresses tissue fibrosis, but its role in BMSC osteogenesis is unclear. We found that TGF-β1 inhibited Nr4a1 expression through HDAC4. Overexpression of Nr4a1 in BMSCs reversed osteogenic differentiation inhibited by high levels of TGF- β1. Mechanistically, RNA sequencing showed that Nr4a1 activated the ECM-receptor interaction and Hippo signaling pathway, which in turn promoted BMSC osteogenesis. In bone defect repair and fracture healing models, transplantation of Nr4a1-overexpressing BMSCs into C57BL/6J mice or treatment with the Nr4a1 agonist Csn-B significantly ameliorated inflammation-induced bone regeneration disorders. In summary, our findings confirm the endogenous inhibitory effect of Nr4a1 on TGF- β1 and uncover the effectiveness of Nr4a1 agonists as a therapeutic tool to improve bone regeneration, which provides a new solution strategy for the treatment of clinical bone defects and inflammatory skeletal diseases.
Found in bone-associated prosthesis, Cutibacterium acnes (C. acnes) is isolated in more than 50% of osteoarticular prosthesis infections, particularly those involving shoulder prostheses. Ongoing controversies exist concerning the origin of C. acnes infection. Few reports construct a reasonable hypothesis about probable contaminant displaced from the superficial skin into the surgical wound. Indeed, despite strict aseptic procedures, transecting the sebaceous glands after incision might result in C. acnes leakage into the surgical wound. More recently, the presence of commensal C. acnes in deep intra-articular tissues was reported. C. acnes was thus detected in the intracellular compartment of macrophages and stromal cells in 62.5% of the tested patients who did not undergo skin penetration. Among bone stromal cells, mesenchymal stem cells (MSCs) are predominantly found in bone marrow and periosteum. MSCs are the source of osteogenic lines of cells capable of forming bone matter. In this study, the pathogenicity of C. acnes in bone repair context was investigated. Human bone marrow derived MSCs were challenged with C. acnes clinical strains harvested from non-infected bone site (Cb). The behaviour of Cb strain was compared to C. acnes took from orthopaedic implant-associated infection (Ci). The infective capabilities of both strains was determined following gentamicin-based antibiotic protection assay. The morphology and ultrastructural analysis of infected MSCs was performed respectively through CLSM pictures of Phalloidin® stained MSCs cytoskeleton and DAPI labelled Cb, and transmission and scanning electron microscopies. The virulence of intracellular Ci and Cb (Ci-MSCs and Cb-MSCs) was investigated by biofilm formation on non-living bone materials; and the immunomodulatory response of infected MSCs was investigated (PGE-2 and IDO secretion detected by ELISA). Bone cells (osteoblasts and PMA differentiated macrophages) were then challenged with Cb-MSCs and Ci-MSCs. Intracellular accumulation of ROS within infected macrophages was assessed by flow cytometry after 2 h of infection and the catalase production by Cb-MSC and Ci-MSC was evaluated. Statistical analyses were performed using Mann & Whitney test.Introduction and Objective
Materials and Methods
Aneurysmal bone cyst (ABC) of the spine is a locally aggressive benign lesion which can be treated by en bloc resection with wide margin to reduce the risk of local recurrence. To avoid morbidity associated with surgery, selective arterial embolization (SAE) can be considered the first-line treatment for ABCs of the spine. Other emerging treatments for ABCs include bisphosphonates, percutaneous doxycycline, sclerotherapy and Denosumab. In addition, we previously introduced the use of autologous bone marrow concentrate (BMC) injection therapy to stimulate bone healing and regeneration in ABC of the spine. One of the potential advantages of such a method is that surgical treatments are not necessary, thus allowing for both a minimally invasive approach and the treatment of poorly accessible lesions. In this prospective study we described the clinical and radiological outcomes of percutaneous injection of autologous BMC in a series of patients affected by ABCs of the spine and followed for at least one year. Fourteen patients (6 male, 8 female) were treated between June 2014 to December 2019 with BMC injection for ABC of the spine. The mean age was 17.85 years. The mean follow up was 37.4 months (range 12– 60 months). The dimension of the cyst and the degree of ossification were measured by Computed Tomography (CT) scans before the treatment and during follow-up visits.Introduction and Objective
Materials and Methods
Growing evidence has suggested that paracrine mechanisms of Mesenchymal stem cell (MSC) may be involved in the underlying mechanism of MSC after transplantation, and extracellular vesicles (EVs) are an important component of this paracrine role. The aim of this study was to investigate the in vitro osteogenic effects of EVs derived from undifferentiated mesenchymal stem cells and from chemically induced to differentiate into osteogenic cells for 7 days. Further, the osteoinductive potential of EVs for bone regeneration in rat calvarial defects was assessed. We could isolate and characterize EVs from naïve and osteogenic-induced MSCs. Proteomic analysis revealed that EVs contained distinct protein profiles, with Osteo-EVs having more differentially expressed proteins with osteogenic properties. EVs were found to enhance the proliferation and migration of cultured MSC. In addition, the study found that Osteo-EVs/MEM combination scaffolds could enhance greater bone formation after 4 weeks as compared to native MEM loaded with serum-free media. The study suggests that EVs derived from chemically osteogenic-induced MSCs for 7 days can significantly enhance both the osteogenic differentiation activity of cultured hMSCs and the osteoinductivity of MEM scaffolds. The results indicate that Osteo-MSC-secreted nanocarriers-EVs combined with MEM scaffolds can be used for repairing bone defects.