Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment.

Cite this article: Bone Joint Res 2024;13(12):725–740.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 83 - 83
14 Nov 2024
Llucia A Espinosa SC
Full Access

Introduction. Tendon ruptures represent one of the most common acute tendon injuries in adults worldwide, affecting millions of people anually and becoming more prevalent due to longer life expectancies and sports activities. Current clinical treatments for full tears are unable to completely restore the torn tendons to their native composition, structure and mechanical properties. To address this clinical challenge, tissue-engineered substitutes will be developed to serve as functional replacements for total tendon ruptures that closely resemble the original tissue, restoring functionality. Method. Water borne polyurethanes (WBPU) containing acrylate groups, specifically polyethylene glycol methacrylate (PEGMA) or 2-hydroxyethyl methacrylate (HEMA), were combined with mouse mesenchymal stem cells (MoMSCs) and heparin sodium to formulate bioinks for the fabrication of scaffolds via extrusion-based 3D bioprinting. Result. The biocompatibility of acrylated-WBPUs was confirmed in 2D with MoMSCs using lactate dehydrogenase assay, DNA assay and live/dead assays. Cell-laden scaffolds were 3D-bioprinted by encapsulating MoMSCs at varying cell densities within the acrylated WBPUs. The resulting 3D structures support cell viability and proliferation within the scaffolds, as confirmed by live/dead assay, lactate dehydrogenase assay and DNA assays. Differentiation studies in the 3D-bioprinted scaffolds demonstrated the phenotype transition of MoMSCs toward tenocytes through gene expression and protein deposition analysis. The inclusion of sodium heparin in the bioinks revealed increased synthesis of matrix assembly proteins within the 3D-bioprinted constructs. Conclusion. The developed bioinks were biocompatible and printable, supporting cell viability within the 3D-bioprinted scaffold. The fabricated cell-laden constructs sustained cell proliferation, differentiation, and tissue formation. The addition of heparin sodium enhanced tissue formation and organization, showing promising results for the regeneration of tendon total ruptures. Principio del formularioThis work was supported by the Spanish State Research Agency (AEI) under grant No CPP2021-008754. The authors would like to thank their partners in the project, which are in charge of the synthesis of heparin sodium and acrylated-WBPUs


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 128 - 128
2 Jan 2024
Kelly D
Full Access

Our musculoskeletal system has a limited capacity for repair. This has led to increased interest in the development of tissue engineering and biofabrication strategies for the regeneration of musculoskeletal tissues such as bone, ligament, tendon, meniscus and articular cartilage. This talk will demonstrate how different musculoskeletal tissues, specifically cartilage, bone and osteochondral defects, can be repaired using emerging biofabrication and 3D bioprinting strategies. This will include examples from our lab where cells and/or growth factors are bioprinted into constructs that can be implanted directly into the body, to approaches where biomimetic tissues are first engineered in vitro before in vivo implantation. The efficacy of these different biofabrication strategies in different preclinical studies will be reviewed, and lessons from the relative successes and failures of these approaches to tissue regeneration will be discussed


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 131 - 131
2 Jan 2024
McDermott G Domingos M Barkatali B Richardson S
Full Access

Meniscal injuries affect over 1.5 million people across Europe and the USA annually. Injury greatly reduces knee joint mobility and quality of life and frequently leads to the development of osteoarthritis. Tissue engineered strategies have emerged in response to a lack of viable treatments for meniscal pathologies. However, to date, constructs mimicking the structural and functional organisation of native tissue, whilst promoting deposition of new extracellular matrix, remains a bottleneck in meniscal repair. 3D bioprinting allows for deposition and patterning of biological materials with high spatial resolution. This project aims to develop a biomimetic 3D bioprinted meniscal substitute. Meniscal tissue was characterised to effectively inform the design of biomaterials for bioprinting constructs with appropriate structural and functional properties. Histology, gene expression and mass spectrometry were performed on native tissue to investigate tissue architecture, matrix components, cell populations and protein expression regionally across the meniscus. 3D laser scanning and magnetic resonance imaging were employed to acquire the external geometrical information prior to fabrication of a 3D printed meniscus. Bioink suitability was investigated through regional meniscal cell encapsulation in blended hydrogels, with the incorporation of growth factors and assessed for their suitability through rheology, scanning electron microscopy, histology and gene expression analysis. Meniscal tissue characterisation revealed regional variations in matrix compositions, cellular populations and protein expression. The process of imaging through to 3D printing highlighted the capability of producing a construct that accurately replicated meniscal geometries. Regional meniscal cell encapsulation into hydrogels revealed a recovery in cell phenotype, with the incorporation of growth factors into the bioink's stimulating cellular re-differentiation and improved zonal functionality. Meniscus biofabrication highlights the potential to print patient specific, customisable meniscal implants. Achieving zonally distinct variations in cell and matrix deposition highlights the ability to fabricate a highly complex tissue engineered construct. Acknowledgements: This work was undertaken as part of the UK Research and Innovation (UKRI)-funded CDT in Advanced Biomedical Materials


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 59 - 59
2 Jan 2024
Bakht S Pardo A Reis R Domingues R Gomes M
Full Access

A major obstacle in biofabrication is replicating the organization of the extracellular matrix and cellular patterns found in anisotropic tissues within bioengineered constructs. While magnetically-assisted 3D bioprinting techniques have the potential to create scaffolds that mimic natural biological structures, they currently lack the ability to accurately control the dispersion of magnetic substances within the bioinks without compromising the fidelity of the intended composite. To overcome this dichotomy, the concepts of magnetically- and matrix-assisted 3D bioprinting are combined here. This method preserves the resolution of printed structures by keeping low viscosity bioinks uncrosslinked during printing, which allows for the arrangement of magnetically-responsive microfibers without compromising the structural integrity of the design. Solidification is induced after the microfibers are arranged in the desired pattern. Furthermore, the precise design of these magnetic microfillers permits the utilization of low levels of inorganic materials and weak magnetic field strengths, which reduces the potential risks that may be associated with their use. The effectiveness of this approach is evaluated in the context of tendon tissue engineering, and the results demonstrate that combining the tendons like anisotropic fibrous microstructure with remote magneto-mechanical stimulation during in vitro maturation provides both biochemical and biophysical cues that effectively guide human adipose-derived stem cells towards a tenogenic phenotype In summary, the developed strategy allows the fabrication of anisotropic high-resolution magnetic composites with remote stimulation functionalities, opening new horizons for tissue engineering applications. Acknowledgments: ERC Grant CoG MagTendon nr 772817, BioChips PoC project nr 10106930, (PD/BD/129403/2017), (CEECIND/01375/2017), (2020.03410.CEECIND), (2022.05526.PTDC), (ED481B2019/025)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 53 - 53
2 Jan 2024
Barrias C
Full Access

Bottom-up tissue engineering (TE) strategies employing microscale living materials as building blocks provide a promising avenue for generating intricate 3D constructs resembling native tissues. These microtissue units exhibit high cell densities and a diverse extracellular matrix (ECM) composition, enhancing their biological relevance. By thoughtfully integrating different cell types, the establishment of vital cell-cell and cell-matrix interactions can be promoted, enabling the recreation of biomimetic micro-niches and the replication of complex morphogenetic processes. Notably, by co-assembling blood vessel-forming endothelial cells with supportive stromal cells, microtissues with stable capillary beds, referred to as vascular units (VUs), can be generated. Through a modular TE approach, these VUs can be further combined with other microtissues and biomaterials to construct large-scale vascularized tissues from the bottom up. Integration of VUs with technologies such as 3D bioprinting and microfluidics allows for the creation of structurally intricate and perfusable constructs. In this presentation, we will showcase examples of VUs and explore their applications in regenerative medicine and tissue modeling. Acknowledgements: This work was supported by project EndoSWITCH (PTDC/BTM-ORG/5154/2020) funded by FCT (Portuguese Foundation for Science and Technology)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 68 - 68
11 Apr 2023
Turnbull G Picard F Clarke J Shu W
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also produced via 3D culture and then bioprinted to accelerate cell growth and development of ECM in bioprinted constructs. Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture over 28 days, with accelerated cell growth seen with inclusion of MSC or chondrocyte spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects (OCDs) and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion we developed novel composite AlgMA/GelMA bioinks that can be triple-crosslinked, facilitating dense chondrocyte and MSC growth in constructs following 3D bioprinting. The bioink can be injected or 3D bioprinted to successfully repair in vitro OCDs, offering hope for a new approach to treating AC defects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 108 - 108
11 Apr 2023
Turnbull G Picard F Clarke J Li B Shu W
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs. Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture over 28 days, with accelerated cell growth seen with inclusion of MSC or chondrocyte spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects (OCDs) and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion we developed novel composite AlgMA/GelMA bioinks that can be triple-crosslinked, facilitating dense chondrocyte and MSC growth in constructs following 3D bioprinting. The bioink can be injected or 3D bioprinted to successfully repair in vitro OCDs, offering hope for a new approach to treating AC defects


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 5 - 5
1 Dec 2022
Lombardo MDM Mangiavini L Peretti GM
Full Access

Menisci are crucial structures for knee homeostasis: they provide increase of congruence between the articular surfaces of the distal femur and tibial plateau, bear loading, shock absorption, lubrication, and proprioception. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible: only the meniscus tissue which is identified as unrepairable should be excised and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping, or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The features needed for a meniscal scaffold are: promotion of cell migration, it should be biomimetic and biocompatible, it should resist forces applied and transmitted by the knee, it should slowly biodegrade and should be easy to handle and implant. Several materials have been tested, that can be divided into synthetic and biological. The first have the advantage to be manufactured with the desired shapes and sizes and with precise porosity dimension and biomechanical characteristics. To date, the most common polymers are polylactic acid (PGA); poly-(L)-lactic acid (PLLA); poly- (lactic-co-glycolic acid) (PLGA); polyurethane (PU); polyester carbon and polycaprolactone (PCL). The possible complications, more common in synthetic than natural polymers are poor cell adhesion and the possibility of developing a foreign body reaction or aseptic inflammation, leading to alter the joint architecture and consequently to worsen the functional outcomes. The biological materials that have been used over time are the periosteal tissue, the perichondrium, the small intestine submucosa (SIS), acellular porcine meniscal tissue, bacterial cellulose. Although these have a very high biocompatibility, some components are not suitable for tissue engineering as their conformation and mechanical properties cannot be modified. Collagen or proteoglycans are excellent candidates for meniscal engineering, as they maintain a high biocompatibility, they allow for the modification of the porosity texture and size and the adaptation to the patient meniscus shape. On the other hand, they have poor biomechanical characteristics and a more rapid degradation rate, compared to others, which could interfere with the complete replacement by the host tissue. An interesting alternative is represented by hydrogel scaffolds. Their semi-liquid nature allows for the generation of scaffolds with very precise geometries obtained from diagnostic images (i.e. MRI). Promising results have been reported with alginate and polyvinyl alcohol (PVA). Furthermore, hydrogel scaffolds can be enriched with growth factors, platelet-rich plasma (PRP) and Bone Marrow Aspirate Concentrate (BMAC). In recent years, several researchers have developed meniscal scaffolds combining different biomaterials, to optimize the mechanical and biological characteristics of each polymer. For example, biological polymers such as chitosan, collagen and gelatin allow for excellent cellular interactions, on the contrary synthetic polymers guarantee better biomechanical properties and greater reliability in the degradation time. Three-dimensional (3D) printing is a very interesting method for meniscus repair because it allows for a patient-specific customization of the scaffolds. The optimal scaffold should be characterized by many biophysical and biochemical properties as well as bioactivity to ensure an ECM-like microenvironment for cell survival and differentiation and restoration of the anatomical and mechanical properties of the native meniscus. The new technological advances in recent years, such as 3D bioprinting and mesenchymal stem cells management will probably lead to an acceleration in the design, development, and validation of new and effective meniscal substitutes


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_6 | Pages 6 - 6
1 Jun 2022
Turnbull G Shu W Picard F Clarke J
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA) and collagen. Chondrocytes and mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs. Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture, with accelerated cell growth seen with inclusion of cell spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion, we developed novel composite bioinks that can be triple-crosslinked, facilitating successful chondrocyte and MSC growth in 3D bioprinted scaffolds and in vitro repair of an osteochondral defect model. This offers hope for a new approach to treating AC defects


Bone & Joint Research
Vol. 10, Issue 12 | Pages 807 - 819
1 Dec 2021
Wong RMY Wong PY Liu C Chung YL Wong KC Tso CY Chow SK Cheung W Yung PS Chui CS Law SW

Aims

The use of 3D printing has become increasingly popular and has been widely used in orthopaedic surgery. There has been a trend towards an increasing number of publications in this field, but existing literature incorporates limited high-quality studies, and there is a lack of reports on outcomes. The aim of this study was to perform a scoping review with Level I evidence on the application and effectiveness of 3D printing.

Methods

A literature search was performed in PubMed, Embase, and Web of Science databases. The keywords used for the search criteria were ((3d print*) OR (rapid prototyp*) OR (additive manufactur*)) AND (orthopaedic). The inclusion criteria were: 1) use of 3D printing in orthopaedics, 2) randomized controlled trials, and 3) studies with participants/patients. Risk of bias was assessed with Cochrane Collaboration Tool and PEDro Score. Pooled analysis was performed.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 122 - 122
1 Dec 2020
Huri PY Talak E Kaya B Huri G
Full Access

Articular cartilage is often damaged, and its treatment is usually performed by surgical operation. Today, tissue engineering offers an alternative treatment option for injuries or diseases with increasing importance. Infrapatellar fat pad (IPFP) is a densely vascularized and innervated extra synovial tissue that fills the anterior knee compartment. Adipose-derived stem cells from infrapatellar fat pad (IPFP-ASCs) have multipotency means that they can differentiate into connective tissue cells and have age-independent differentiation capacity as compared to other stem cells.

In this study, the osteochondral tissue construct was designed with different inner pattern due to original osteochondral tissue structure and fabrication of it was carried out by 3D printing. For this purpose, alginate (3% w/v) and carboxymethylcellulose (CMC) (9%w /v) were used as bioink. Also, IPFP-ASCs were isolated with enzymatic degradation. Osteogenic and chondrogenic differentiation of IPFP-ASCs were investigated with Alizarin Red and Alcian Blue staining, respectively. IPFP-ASCs-laden osteochondral graft differentiation will be induced by controlled release of growth factor BMP-2 and TGF-β. Before this step, nanocapsules formation with double emission technique with model protein BSA was carried out with different concentration of PCL (5%,10% and 20%).

The morphology and structure of the nanocapsules were determined with scanning electron microscopy (SEM). Also, we successfully designed and printed alginate and CMC based scaffold with 20 layers. Chondrogenic and osteogenic differentiation of IPFP-ASCs with suitable culture conditions was obtained.

The isolation of IPFP-ASCs, formation of the nanocapsules, and 3D printing of osteochondral graft were carried out successfully.


Bone & Joint Research
Vol. 8, Issue 2 | Pages 101 - 106
1 Feb 2019
Filardo G Petretta M Cavallo C Roseti L Durante S Albisinni U Grigolo B

Objectives. Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology. Methods. A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability. Results. This study involved the realization of a human cell-laden collagen meniscus using 3D bioprinting. The meniscus prototype showed the biological potential of this technology to provide an anatomically shaped, patient-specific construct with viable cells on a biocompatible material. Conclusion. This paper reports the preliminary findings of the production of a custom-made, cell-laden, collagen-based human meniscus. The prototype described could act as the starting point for future developments of this collagen-based, tissue-engineered structure, which could aid the optimization of implants designed to replace damaged menisci. Cite this article: G. Filardo, M. Petretta, C. Cavallo, L. Roseti, S. Durante, U. Albisinni, B. Grigolo. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Joint Res 2019;8:101–106. DOI: 10.1302/2046-3758.82.BJR-2018-0134.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 104 - 104
1 Nov 2018
Alruwaili M Reynaud E Rodriguez B
Full Access

Hydrogels are hydrated 3-dimensional (3D) polymer networks that can be chemically or physically crosslinked. Interest in the use of hydrogels for tissue engineering applications has been growing in the past few decades due to their excellent biocompatibility and biodegradability. One of the major drawbacks of the use of hydrogels in such applications is their lack of structural strength. To address this, in this work, we have combined two hydrogel types, namely gelatin and alginate. In this work, a 1 ml volume of gelatin alginate hydrogel was molded in each well of a 24 well-plate and crosslinked with different concentrations of calcium chloride (CaCl. 2. ) (20, 40, 60, 80, and 100 mM) to investigate the influence of concentration on hydrogel properties and cell viability. The hydrogel was characterized using Fourier transform infrared (FTIR) spectrometry, environmental scanning electron microscopy (ESEM), and an Alamar blue assay to assess the chemical structure, the surface morphology, and the epithelial cell viability of the hydrogel, respectively. The FTIR analysis shows that network formation improved with increasing concentration; decreased ion-polymer interactions have been noted for concentrations ≤ 60 mM. This appears to be in agreement with ESEM images that show an evolution from a smooth, featureless surface to the appearance of surface pore structure for concentrations ≥ 80 mM. Perhaps as ion concentration increases and network formation improves, the effect is evidenced as surface porosity; low concentrations result in swelling and a smooth surface. In terms of cell viability, viability has been found to increase with increasing concentration. The cell viability is 90 % at 100 mM CaCl. 2. , in contrast to 50 % for a concentration of 20 mM after 9 days of incubation. It is possible that the reduced viability can be attributed to the high proportion of uncrosslinked polymer chains at low concentrations. Overall, these results provide useful information about the role of crosslinking concentration on hydrogel properties, knowledge that may be applied to 3D bioprinting


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 126 - 126
1 Nov 2018
Kelly D
Full Access

Our musculoskeletal system has a limited capacity for repair. This has led to increased interest in the development of tissue engineering strategies for the regeneration of musculoskeletal tissues such as bone, ligament, tendon, meniscus and articular cartilage. This talk will review our attempts to use biomaterials and mesenchymal stem cells (MSCs) to bioprint functional articular cartilage and bone grafts for use in bone and joint regeneration. It will begin by describing how 3D bioprinting can be used to engineer biological implants mimicking the shape of specific bones, and how these bioprinted tissues mature into functional bone organs upon implantation into the body. Next, it will be demonstrated that different musculoskeletal injuries can be regenerated using 3D bioprinted implants, including large bone defects and osteochondral defects. The talk will conclude by describing how we can integrate biomaterials and MSCs into 3D bioprinting systems to engineer scaled-up tissues that could potentially be used regenerate entire diseased joints


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 50 - 50
1 Jan 2017
Petretta M Cavallo C Acciaioli A Mecca R Baleani M Baruffaldi F Lisignoli G Mariani E Grigolo B
Full Access

In clinical orthopedics suitable materials that induce and restore biological functions together with the right mechanical properties are particularly needed for the regeneration of musculoskeletal tissue. An innovative solution to answer this need is represented by tissue engineering. This technique could overcome the limits of traditional approaches involving the use of homologous, autologous or allogenetic tissue (e.g. tissue availability, immune rejection and pathogen transfer). In this field, rapid prototyping techniques are emerging as the most promising tool to realize three-dimensional tissue constructs with highly complex geometries. Based on CAD/CAM technology, rapid prototyping allows development of patient-specific 3D scaffolds from digital data obtained with latest generation imaging tools. These structures can be realized in different materials, tailoring their mechanical properties and architectural features. Most rapid prototyping techniques allow the creation of acellular 3D scaffolds, which must be subsequently seeded with cells. Conversely, 3D bioprinting can deposit bio-ink containing molecules/cells, providing desired spatial distribution of growth factors/cells within the scaffold. The need of printable materials suitable for processing with inkjet, dispensing, or laser-print technologies, forces the use of matrices within a specific range of viscosity. However, these materials have low mechanical features. To overcome this problem and to obtain a final construct with good mechanical properties, bioprinting tissue fabrication can rely on the alternate deposition of thermoplastic materials and cell-laden hydrogels. Since mechanical performance is determined not only by the material properties but also by the geometry (microarchitecture) of the structure, printing parameters can be modified to obtain the desired features. The new 3D platform available at Rizzoli Orthopaedic Institute, consisting of a Computer Tomography (GE Medical Systems, Milano, Italia) and a 3D Bio-Printer (RegenHU, Villaz-St-Pierre, Switzerland) is used to address the above-mentioned issues. Preliminary results showed that it is possible to modify the microarchitecture of the printed structures adjusting their apparent density and stiffness in the range of the trabecular bone tissue. Additionally, it has been proven that the calcium phosphate based paste, used as bioink, allows cell attachment and proliferation. Therefore, the platform allows to print scaffolds with open and interconnected porosities and suitable mechanical properties. They can be filled with different components such as cells or soluble growth factors at specific locations