Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Open
Vol. 4, Issue 10 | Pages 750 - 757
10 Oct 2023
Brenneis M Thewes N Holder J Stief F Braun S

Aims

Accurate skeletal age and final adult height prediction methods in paediatric orthopaedics are crucial for determining optimal timing of growth-guiding interventions and minimizing complications in treatments of various conditions. This study aimed to evaluate the accuracy of final adult height predictions using the central peak height (CPH) method with long leg X-rays and four different multiplier tables.

Methods

This study included 31 patients who underwent temporary hemiepiphysiodesis for varus or valgus deformity of the leg between 2014 and 2020. The skeletal age at surgical intervention was evaluated using the CPH method with long leg radiographs. The true final adult height (FHTRUE) was determined when the growth plates were closed. The final height prediction accuracy of four different multiplier tables (1. Bayley and Pinneau; 2. Paley et al; 3. Sanders – Greulich and Pyle (SGP); and 4. Sanders – peak height velocity (PHV)) was then compared using either skeletal age or chronological age.


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1269 - 1273
1 Sep 2014
Kitoh H Mishima K Matsushita M Nishida Y Ishiguro N

Two types of fracture, early and late, have been reported following limb lengthening in patients with achondroplasia (ACH) and hypochondroplasia (HCH). . We reviewed 25 patients with these conditions who underwent 72 segmental limb lengthening procedures involving the femur and/or tibia, between 2003 and 2011. Gender, age at surgery, lengthened segment, body mass index, the shape of the callus, the amount and percentage of lengthening and the healing index were evaluated to determine predictive factors for the occurrence of early (within three weeks after removal of the fixation pins) and late fracture (> three weeks after removal of the pins). The Mann‑Whitney U test and Pearson’s chi-squared test for univariate analysis and stepwise regression model for multivariate analysis were used to identify the predictive factor for each fracture. Only one patient (two tibiae) was excluded from the analysis due to excessively slow formation of the regenerate, which required supplementary measures. A total of 24 patients with 70 limbs were included in the study. There were 11 early fractures in eight patients. The shape of the callus (lateral or central callus) was the only statistical variable related to the occurrence of early fracture in univariate and multivariate analyses. Late fracture was observed in six limbs and the mean time between removal of the fixation pins and fracture was 18.3 weeks (3.3 to 38.4). Lengthening of the tibia, larger healing index, and lateral or central callus were related to the occurrence of a late fracture in univariate analysis. A multivariate analysis demonstrated that the shape of the callus was the strongest predictor for late fracture (odds ratio: 19.3, 95% confidence interval: 2.91 to 128). Lateral or central callus had a significantly larger risk of fracture than fusiform, cylindrical, or concave callus. Radiological monitoring of the shape of the callus during distraction is important to prevent early and late fracture of lengthened limbs in patients with ACH or HCH. In patients with thin callus formation, some measures to stimulate bone formation should be considered as early as possible. Cite this article: Bone Joint J 2014;96-B:1269–73


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 406 - 407
1 Oct 2006
Anderson R Gadina M Houghton A Li G
Full Access

Introduction: Fibroblast growth factor receptor 3 (FGFR3) is a tyrosine kinase membrane-spanning protein whose function is to regulate chondrocyte proliferation, differentiation and matrix production during cartilage development. Several mutations in FGFR3 have now been documented to link to human diseases. A number of these mutations result in constitutive activation of the FGFR3, leading to proliferation and premature differentiation of chondrocytes. Depending on the mutation and the resultant level of FGFR3 activation, mild to severe skeletal dysplasias such as achondroplasia (ACH), hypochondroplasia (HCH), thanatophoric dysplasia type I (TDI) and type II (TDII), and severe achondroplasia with developmental delay and acanthosis nigrans (SADDAN) may result. It has been postulated that the signalling pathways downstream of FGFR3 may be responsible for activating transcription factors, leading to up-regulation of cell cycle inhibitors and causing abnormal suppression of chondrocyte cell proliferation. However, the precise signalling pathways involved in FGFR3 mutation have as yet to be elucidated. The aim of this study was to investigate and compare the differences in the downstream signalling pathways between FGFR3 mutants. Methods and Results: Wild type FGFR3 has been cloned into expression vector pcDNA3 and the construct has been used to generate four different FGFR3 mutants using site-directed mutagenesis. The mutations which have been introduced and the types of dysplasia they correspond to were as follows: K380R (ACH), N540K (HCH) and K650E (TDII). A kinase dead form of the receptor, K504R has also been generated. Wild type and each of the four mutant FGFR3 proteins in pcDNA3 vector have been successfully transfected into 293T cells using the calcium phosphate method. Immunoprecipitation and Western Blot analysis of cell lysates revealed expression of wild type protein in three isoforms of size 135kDa (mature), 120kDa (intermediate) and 98kDa (immature). The mutant proteins all followed a similar pattern of expression with the exception of the TDII mutant that did not express the mature form of the FGFR3. Changes in MAPK, PLCã and STAT 1 signalling pathways in response to FGFs-1, 2, 9 and 18 in the 293-cells of wild type and mutant forms of FGFR3 are now under investigation, in an attempt to define which pathways are mostly responsible for the resultant abnormal phenotypes. Discussion: Genomics studies have demonstrated that FGFR3 expression is significantly upregulated during the osteoblastic differentiation of mesenchymal stem cells (MSCs) under BMP-2 stimulation in vitro. Subsequent functional studies have demonstrated that a selective ligand for FGFR3, FGF9, is able to induce tyrosine kinase signalling, and the osteoblastic differentiation of MSCs in vitro. Further understanding the signalling mechanisms of FGFR3 activation in normal and mutant forms may lead to discover potential anabolic agents that are based on FGFR3-FGFs pathways


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 6 | Pages 1052 - 1056
1 Nov 1998
Matsui Y Kawabata H Yasui N Kimura T Tsumaki N Ochi T

Recent studies of the fibroblast growth factor receptor 3 (FGFR3) gene have established that achondroplasia and hypochondroplasia are allelic disorders of different mutations. To determine whether the genotype could be distinguished on the basis of the phenotype, we analysed height, arm span, and skeletal radiographs from 23 patients with achondroplasia and the G380R mutation of FGFR3 and eight with hypochondroplasia and the N540K mutation. Both conditions share the classical pathological features of micromelic short stature, reduced or unchanged interpedicular distances in the lumbar spine, disproportionately long fibulae, and squared and shortened pelvic ilia. These were significantly more severe in the G380R patients than in the N540K patients. Our findings have shown a firm statistical correlation between the genotype and the phenotype, although there were a few exceptional cases in which there was phenotypic overlap between the two conditions


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 4 | Pages 550 - 556
1 Aug 1986
De Bastiani G Aldegheri R Renzi Brivio L Trivella G

We describe a technique for slow, progressive, symmetrical distraction of the growth plate using a lightweight dynamic axial fixation system. Results are given for the elongation of 40 bony segments in children with limb-length discrepancies and 60 segments in children with achondroplasia or hypochondroplasia. Increases in limb length of up to 36% were obtained in non-achondroplastic and up to 64.5% in achondroplastic patients. There were no nerve or vascular lesions or bony infections and no case required a bone graft. Pin-track complications occurred in only 1.5%


The Journal of Bone & Joint Surgery British Volume
Vol. 63-B, Issue 4 | Pages 508 - 515
1 Nov 1981
Wynne-Davies R Walsh W Gormley J

Forty-eight patients with achondroplasia and 24 with hypochondroplasia have been reviewed in order to clarify the differences between the two disorders and establish the height, body proportions and other clinical and radiological variations within each group. Some of the "classical" findings in achondroplasia are not always present, and hypochondroplasia at its most severe is indistinguishable from achondroplasia at its least severe. The frequency of spinal stenosis and neurological complications was established in an unselected group of 27 achondroplastic and 12 hypochondroplastic patients aged 10 years and over. Only three of the former were free of symptoms but only three developed serious complications (11 per cent). Measurement of radiographs of the lumbar canal did not in general correlate well with the severity of spinal stenosis symptoms, but it was found that the ratio of interpedicular distances at the first and fourth lumbar vertebrae had some value. Neurological complications were rare in patients with simple narrowing of the spinal canal or with persistence of a thoracolumbar kyphos but when these occurred together there was a high risk of serious neurological involvement.