Advertisement for orthosearch.org.uk
Results 1 - 20 of 1519
Results per page:
Bone & Joint Open
Vol. 5, Issue 12 | Pages 1101 - 1107
11 Dec 2024
Haas-Lützenberger EM Emelianova I Bader MC Mert S Moellhoff N Demmer W Berger U Giunta R

Aims

In the treatment of basal thumb osteoarthritis (OA), intra-articular autologous fat transplantation has become of great interest within recent years as a minimally invasive and effective alternative to surgical intervention with regard to pain reduction. This study aims to assess its long-term effectiveness.

Methods

Patients diagnosed with stage one to three OA received a single intra-articular autologous fat transplantation. Fat tissue was harvested from the abdomen and injected into the trapeziometacarpal (TMC) joint under radiological guidance, followed by one week of immobilization. Patients with a minimum three-year post-procedure period were assessed for pain level (numerical rating scale), quality of life (Mental Health Quotient (MHQ)), the abbreviated version of the Disabilities of Arm, Shoulder and Hand questionnaire (QuickDASH)), and grip and pinch strength, as well as their overall impression of the treatment. Wilcoxon tests compared data from pre-intervention, and at one and three years post-intervention.


Bone & Joint Open
Vol. 5, Issue 12 | Pages 1072 - 1080
4 Dec 2024
Tang M Lun KK Lewin AM Harris IA

Aims

Systematic reviews of randomized controlled trials (RCTs) are the highest level of evidence used to inform patient care. However, it has been suggested that the quality of randomization in RCTs in orthopaedic surgery may be low. This study aims to describe the quality of randomization in trials included in systematic reviews in orthopaedic surgery.

Methods

Systematic reviews of RCTs testing orthopaedic procedures published in 2022 were extracted from PubMed, Embase, and the Cochrane Library. A random sample of 100 systematic reviews was selected, and all included RCTs were retrieved. To be eligible for inclusion, systematic reviews must have tested an orthopaedic procedure as the primary intervention, included at least one study identified as a RCT, been published in 2022 in English, and included human clinical trials. The Cochrane Risk of Bias-2 Tool was used to assess random sequence generation as ‘adequate’, ‘inadequate’, or ‘no information’; we then calculated the proportion of trials in each category. We also collected data to test the association between these categories and characteristics of the RCTs and systematic reviews.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 716 - 724
4 Dec 2024
Cao S Chen Y Zhu Y Jiang S Yu Y Wang X Wang C Ma X

Aims

This cross-sectional study aimed to investigate the in vivo ankle kinetic alterations in patients with concomitant chronic ankle instability (CAI) and osteochondral lesion of the talus (OLT), which may offer opportunities for clinician intervention in treatment and rehabilitation.

Methods

A total of 16 subjects with CAI (eight without OLT and eight with OLT) and eight healthy subjects underwent gait analysis in a stair descent setting. Inverse dynamic analysis was applied to ground reaction forces and marker trajectories using the AnyBody Modeling System. One-dimensional statistical parametric mapping was performed to compare ankle joint reaction force and joint moment curve among groups.


Bone & Joint 360
Vol. 13, Issue 6 | Pages 19 - 22
1 Dec 2024

The December 2024 Knee Roundup360 looks at: Unicompartmental knee arthroplasty and total knee arthroplasty in the same patient?; Lateral unicompartmental knee arthroplasty: is it a good option?; The fate of the unresurfaced patellae in contemporary total knee arthroplasty: early- to mid-term results; Tibial baseplate migration is not associated with change in PROMs and clinical scores after total knee arthroplasty; Unexpected positive intraoperative cultures in aseptic revision knee arthroplasty: what effect does this have?; Kinematic or mechanical alignment in total knee arthroplasty surgery?; Revision total knee arthroplasty achieves minimal clinically important difference faster than primary total knee arthroplasty; Outcomes after successful DAIR for periprosthetic joint infection in total knee arthroplasty.


Bone & Joint 360
Vol. 13, Issue 6 | Pages 39 - 41
1 Dec 2024

The December 2024 Oncology Roundup360 looks at: Non-reversed great saphenous vein grafts for vascular reconstruction after resection of lower limb sarcoma; Detrimental effects of COVID-19 pandemic on patients with limb bone sarcoma: reference centre experience; Whole-body staging guidelines in sarcoma; Intraoperative marrow margin frozen section in limb bone sarcoma resection; Vacuum-assisted closure and paediatric oncological limb salvage; Treatment differences and long-term outcomes in adults and children with Ewing’s sarcoma; Survival, complications, and functional outcomes of uncemented distal femoral endoprosthesis with short, curved stem for patients with bone tumours.


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1361 - 1362
1 Dec 2024
Haddad FS


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1451 - 1460
1 Dec 2024
Mandalia K Le Breton S Roche C Shah SS

Aims. A recent study used the RAND Corporation at University of California, Los Angeles (RAND/UCLA) method to develop anatomical total shoulder arthroplasty (aTSA) appropriateness criteria. The purpose of our study was to determine how patient-reported outcome measures (PROMs) vary based on appropriateness. Methods. Clinical data from a multicentre database identified patients who underwent primary aTSA from November 2004 to January 2023. A total of 390 patients (mean follow-up 48.1 months (SD 42.0)) were included: 97 (24.9%) were classified as appropriate, 218 (55.9%) inconclusive, and 75 (19.2%) inappropriate. Patients were classified as “appropriate”, “inconclusive”, or “inappropriate”, using a modified version of an appropriateness algorithm, which accounted for age, rotator cuff status, mobility, symptomatology, and Walch classification. Multiple pre- and postoperative scores were analyzed using Pearson’s chi-squared test and one-way analysis of variance (ANOVA). Postoperative complications were also analyzed. Results. All groups achieved significant improvement in mean PROM scores postoperatively. “Appropriate” patients experienced significantly greater improvement in visual analogue scale (VAS) and American Shoulder and Elbow Surgeons (ASES) score compared to “inconclusive” and “inappropriate”. The appropriate group had a significantly greater proportion of patients who achieved minimal clinically important difference (MCID) (95.8%; n = 93) and substantial clinical benefit (SCB) (92.6%; n = 89). Overall, 13 patients had postoperative complications. No significant differences in postoperative complications among classifications were found. Conclusion. Our data clinically validate the RAND/UCLA aTSA appropriateness criteria algorithm, allowing for more rapid and reliable determination of aTSA candidacy. “Appropriate” patients were more likely to achieve MCID and SCB for ASES scores compared to “inappropriate” patients. Among “appropriate” patients who did not achieve SCB, 50% (n = 4) had a postoperative complication. There was a significantly higher proportion of postoperative complications among those who did not achieve SCB across all three groups. Only 7.1% (n = 1) of patients who did not achieve SCB in the inappropriate group had a postoperative complication. Thus, it can be inferred that the failure to reach SCB in the appropriate group was likely to be due to a postoperative complication, whereas for patients deemed “inappropriate”, failure to reach SCB may be secondary to factors accounted for within our algorithm. Cite this article: Bone Joint J 2024;106-B(12):1451–1460


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1377 - 1384
1 Dec 2024
Fontalis A Yasen AT Giebaly DE Luo TD Magan A Haddad FS

Periprosthetic joint infection (PJI) represents a complex challenge in orthopaedic surgery associated with substantial morbidity and healthcare expenditures. The debridement, antibiotics, and implant retention (DAIR) protocol is a viable treatment, offering several advantages over exchange arthroplasty. With the evolution of treatment strategies, considerable efforts have been directed towards enhancing the efficacy of DAIR, including the development of a phased debridement protocol for acute PJI management. This article provides an in-depth analysis of DAIR, presenting the outcomes of single-stage, two-stage, and repeated DAIR procedures. It delves into the challenges faced, including patient heterogeneity, pathogen identification, variability in surgical techniques, and antibiotics selection. Moreover, critical factors that influence the decision-making process between single- and two-stage DAIR protocols are addressed, including team composition, timing of the intervention, antibiotic regimens, and both anatomical and implant-related considerations. By providing a comprehensive overview of DAIR protocols and their clinical implications, this annotation aims to elucidate the advancements, challenges, and potential future directions in the application of DAIR for PJI management. It is intended to equip clinicians with the insights required to effectively navigate the complexities of implementing DAIR strategies, thereby facilitating informed decision-making for optimizing patient outcomes.

Cite this article: Bone Joint J 2024;106-B(12):1377–1384.


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1431 - 1442
1 Dec 2024
Poutoglidou F van Groningen B McMenemy L Elliot R Marsland D

Lisfranc injuries were previously described as fracture-dislocations of the tarsometatarsal joints. With advancements in modern imaging, subtle Lisfranc injuries are now more frequently recognized, revealing that their true incidence is much higher than previously thought. Injury patterns can vary widely in severity and anatomy. Early diagnosis and treatment are essential to achieve good outcomes. The original classification systems were anatomy-based, and limited as tools for guiding treatment. The current review, using the best available evidence, instead introduces a stability-based classification system, with weightbearing radiographs and CT serving as key diagnostic tools. Stable injuries generally have good outcomes with nonoperative management, most reliably treated with immobilization and non-weightbearing for six weeks. Displaced or comminuted injuries require surgical intervention, with open reduction and internal fixation (ORIF) being the most common approach, with a consensus towards bridge plating. While ORIF generally achieves satisfactory results, its effectiveness can vary, particularly in high-energy injuries. Primary arthrodesis remains niche for the treatment of acute injuries, but may offer benefits such as lower rates of post-traumatic arthritis and hardware removal. Novel fixation techniques, including suture button fixation, aim to provide flexible stabilization, which theoretically could improve midfoot biomechanics and reduce complications. Early findings suggest promising functional outcomes, but further studies are required to validate this method compared with established techniques. Future research should focus on refining stability-based classification systems, validation of weightbearing CT, improving rehabilitation protocols, and optimizing surgical techniques for various injury patterns to ultimately enhance patient outcomes.

Cite this article: Bone Joint J 2024;106-B(12):1431–1442.


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1363 - 1368
1 Dec 2024
Chen DB Wood JA Griffiths-Jones W Bellemans J Haddad FS MacDessi SJ

As advancements in total knee arthroplasty progress at an exciting pace, two areas are of special interest, as they directly impact implant design and surgical decision making. Knee morphometry considers the three-dimensional shape of the articulating surfaces within the knee joint, and knee phenotyping provides the ability to categorize alignment into practical groupings that can be used in both clinical and research settings. This annotation discusses the details of these concepts, and the ways in which they are helping us better understand the individual subtleties of each patient’s knee.

Cite this article: Bone Joint J 2024;106-B(12):1363–1368.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 37 - 37
22 Nov 2024
Vitiello R Smimmo A Taccari F Matteini E Micheli G Fantoni M Maccauro G
Full Access

Aim. Periprosthetic joint infection (PJI) is a devastating complication that develops after total joint arthroplasty (TJA) whose incidence is expected to increase over the years. Traditionally, surgical treatment of PJI has been based on algorithms, where early infections are preferably treated with debridement, antibiotics, and implant retention (DAIR), while late infections with two-stage revision surgery. Two-stage revision is considered the “gold standard” for treatment of chronic PJI. In this observational retrospective study, we investigated the potential role of inflammatory blood markers (neutrophil-to- lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), systemic inflammatory index (SII)], systemic inflammatory response index (SIRI), and aggregate index of systemic inflammation (AISI)) as prognostic factors in two-stage exchange arthroplasty for PJI. Method. A single-center retrospective analysis was conducted, collecting clinical data and laboratory parameters from patients submitted to prosthetic explantation for chronic PJI. Laboratory parameters (PCR, NLR, MLR, PLR, SIRI, SII and AISI) were evaluated at the explantation time, at 4, 6, 8 weeks after surgery and at reimplantation time. Correlation between laboratory parameters and surgery success was evaluated, defined as infection absence/resolution at the last follow up. Results. 57 patients with PJI were evaluated (62% males; average age 70 years, SD 12.14). Fifty-three patients with chronic PJI were included. Nineteen patients completed the two-stage revision process. Among them, none showed signs of re-infection or persistence of infection at the last available follow up. The other twenty-three patients did not replant due to persistent infection: among them, some (the most) underwent spacer retention; others were submitted to Girdlestone technique or chronic suppressive antibiotic therapy. Of the patients who concluded the two-stage revision, the ones with high SIRI values (mean 3.08 SD 1.7, p-value 0.04) and MLR values (mean 0.4 SD 0.2, p-value 0.02) at the explantation time were associated with a higher probability of infection resolution. Moreover, higher variation of SIRI and PCR, also defined respectively delta-SIRI (mean −2.3 SD 1.8, p-value 0.03) and delta-PCR (mean −46 SD 35.7, p-value 0.03), were associated with favorable outcomes. Conclusions. The results of our study suggest that, in patients with PJI undergoing two-stage, SIRI and MLR values and delta-SIRI and delta-PCR values could be predictive of favorable outcome. The evaluation of these laboratory indices, especially their determination at 4 weeks after removal, could therefore help to determine which patients could be successfully replanted and to identify the best time to replant


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 57 - 57
14 Nov 2024
Birkholtz F Eken M Boyes A Engelbrecht A
Full Access

Introduction

With advances in artificial intelligence, the use of computer-aided detection and diagnosis in clinical imaging is gaining traction. Typically, very large datasets are required to train machine-learning models, potentially limiting use of this technology when only small datasets are available. This study investigated whether pretraining of fracture detection models on large, existing datasets could improve the performance of the model when locating and classifying wrist fractures in a small X-ray image dataset. This concept is termed “transfer learning”.

Method

Firstly, three detection models, namely, the faster region-based convolutional neural network (faster R-CNN), you only look once version eight (YOLOv8), and RetinaNet, were pretrained using the large, freely available dataset, common objects in context (COCO) (330000 images). Secondly, these models were pretrained using an open-source wrist X-ray dataset called “Graz Paediatric Wrist Digital X-rays” (GRAZPEDWRI-DX) on a (1) fracture detection dataset (20327 images) and (2) fracture location and classification dataset (14390 images). An orthopaedic surgeon classified the small available dataset of 776 distal radius X-rays (Arbeidsgmeischaft für Osteosynthesefragen Foundation / Orthopaedic Trauma Association; AO/OTA), on which the models were tested.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 69 - 69
14 Nov 2024
Sawant S Borotikar B Raghu V Audenaert E Khanduja V
Full Access

Introduction. Three-dimensional (3D) morphological understanding of the hip joint, specifically the joint space and surrounding anatomy, including the proximal femur and the pelvis bone, is crucial for a range of orthopedic diagnoses and surgical planning. While deep learning algorithms can provide higher accuracy for segmenting bony structures, delineating hip joint space formed by cartilage layers is often left for subjective manual evaluation. This study compared the performance of two state-of-the-art 3D deep learning architectures (3D UNET and 3D UNETR) for automated segmentation of proximal femur bone, pelvis bone, and hip joint space with single and multi-class label segmentation strategies. Method. A dataset of 56 3D CT images covering the hip joint was used for the study. Two bones and hip joint space were manually segmented for training and evaluation. Deep learning models were trained and evaluated for a single-class approach for each label (proximal femur, pelvis, and the joint space) separately, and for a multi-class approach to segment all three labels simultaneously. A consistent training configuration of hyperparameters was used across all models by implementing the AdamW optimizer and Dice Loss as the primary loss function. Dice score, Root Mean Squared Error, and Mean Absolute Error were utilized as evaluation metrics. Results. Both the models performed at excellent levels for single-label segmentations in bones (dice > 0.95), but single-label joint space performance remained considerably lower (dice < 0.87). Multi-class segmentations remained at lower performance (dice < 0.88) for both models. Combining bone and joint space labels may have introduced a class imbalance problem in multi-class models, leading to lower performance. Conclusion. It is not clear if 3D UNETR provides better performance as the selection of hyperparameters was the same across the models and was not optimized. Further evaluations will be needed with baseline UNET and nnUNET modeling architectures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 82 - 82
14 Nov 2024
Kühl J Grocholl J Seekamp A Klüter T Fuchs S
Full Access

Introduction. The surgical treatment of critical-sized bone defects with complex three-dimensional (3D) geometries is a challenge for the treating surgeon. Additive manufacturing such as 3D printing enables the production of highly individualized bone implants meeting the shape of the patient's bone defect and including a tunable internal structure. In this study, we showcase the design process for patient-specific implants with critical-sized tibia defects. Methods. Two clinical cases of patients with critical tibia defects (size 63×20×21 mm and 50×24×17 mm) were chosen. Brainlab software was used for segmentation of CT data generating 3D models of the defects. The implant construction involves multiple stages. Initially, the outer shell is precisely defined. Subsequently, the specified volume is populated with internal structures using Voronoi, Gyroid, and NaCl crystal structures. Variation in pore size (1.6 mm and 1.0 mm) was accomplished by adjusting scaffold size and material thickness. Results. An algorithmic design process in Rhino and Grasshopper was successfully applied to generate model implants for the tibia from Ct data. By integrating a precise mesh into an outer shell, a scaffold with controlled porosity was designed. In terms of the internal design, both Voronoi and Gyroid form macroscopically homogeneous properties, while NaCl, exhibits irregularities in density and consequently, in the strength of the structure. Data implied that Voronoi and Gyroid structures adapt more precisely to complex and irregular outer shapes of the implants. Conclusion. In proof-of-principle studies customized tibia implants were successfully generated and printed as model implants based on resin. Further studies will include more patient data sets to refine the workflows and digital tools for a broader spectrum of bone defects. The algorithm-based design might offer a tremendous potential in terms of an automated design process for 3D printed implants which is essential for clinical application


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1013 - 1019
11 Nov 2024
Clark SC Pan X Saris DBF Taunton MJ Krych AJ Hevesi M

Aims

Distal femoral osteotomies (DFOs) are commonly used for the correction of valgus deformities and lateral compartment osteoarthritis. However, the impact of a DFO on subsequent total knee arthroplasty (TKA) function remains a subject of debate. Therefore, the purpose of this study was to determine the effect of a unilateral DFO on subsequent TKA function in patients with bilateral TKAs, using the contralateral knee as a self-matched control group.

Methods

The inclusion criteria consisted of patients who underwent simultaneous or staged bilateral TKA after prior unilateral DFO between 1972 and 2023. The type of osteotomy performed, osteotomy hardware fixation, implanted TKA components, and revision rates were recorded. Postoperative outcomes including the Forgotten Joint Score-12 (FJS-12), Tegner Activity Scale score, and subjective knee preference were also obtained at final follow-up.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 962 - 970
4 Nov 2024
Suter C Mattila H Ibounig T Sumrein BO Launonen A Järvinen TLN Lähdeoja T Rämö L

Aims

Though most humeral shaft fractures heal nonoperatively, up to one-third may lead to nonunion with inferior outcomes. The Radiographic Union Score for HUmeral Fractures (RUSHU) was created to identify high-risk patients for nonunion. Our study evaluated the RUSHU’s prognostic performance at six and 12 weeks in discriminating nonunion within a significantly larger cohort than before.

Methods

Our study included 226 nonoperatively treated humeral shaft fractures. We evaluated the interobserver reliability and intraobserver reproducibility of RUSHU scoring using intraclass correlation coefficients (ICCs). Additionally, we determined the optimal cut-off thresholds for predicting nonunion using the receiver operating characteristic (ROC) method.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care.

Cite this article: Bone Joint J 2024;106-B(11):1206–1215.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1321 - 1326
1 Nov 2024
Sanchez-Sotelo J

Periprosthetic joint infection represents a devastating complication after total elbow arthroplasty. Several measures can be implemented before, during, and after surgery to decrease infection rates, which exceed 5%. Debridement with antibiotics and implant retention has been reported to be successful in less than one-third of acute infections, but still plays a role. For elbows with well-fixed implants, staged retention seems to be equally successful as the more commonly performed two-stage reimplantation, both with a success rate of 70% to 80%. Permanent resection or even amputation are occasionally considered. Not uncommonly, a second-stage reimplantation requires complex reconstruction of the skeleton with allografts, and the extensor mechanism may also be deficient. Further developments are needed to improve our management of infection after elbow arthroplasty.

Cite this article: Bone Joint J 2024;106-B(11):1321–1326.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1273 - 1283
1 Nov 2024
Mahmud H Wang D Topan-Rat A Bull AMJ Heinrichs CH Reilly P Emery R Amis AA Hansen UN

Aims

The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids.

Methods

Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims

The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different.

Methods

A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes.