Advertisement for orthosearch.org.uk
Results 1 - 20 of 98
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 60 - 60
19 Aug 2024
Lau LCM Cheung MH Ng FY Fu H Chan PK Chiu P
Full Access

In total hip arthroplasty (THA), cementless cup without screw holes has the putative benefits of maximizing host bone contact and reducing osteolysis by eliminating channels to backside wear particles. However, supplemental trans-acetabular screws cannot be used. 74 hips in 60 patients receiving same model of cementless cup without screw holes (Depuy Duraloc 100 HA cup) from 6/1999 to 3/2003 were prospectively followed up. All patients were allowed to have immediate full weight bearing. Age at THA was 53 ± 13 (range 24–74) years. Osteonecrosis was the leading hip disease (45% of hips). Survivorship was assessed using revision of the cup as the end point. Radiological parameters, including lateral opening angle, vertical and horizontal migration distances of the cups were measured. Paired t-test was used to compare between the measurements in early postoperative period and at final follow up. 51 hips were assessed at minimum 20 years follow-up. The mean follow-up was 22.6 (range 21 – 25) years. All the cups were well fixed. There were two cup revisions. Conventional polyethylene (PE) was used in both hips; osteolysis occurred 17 and 18 years later. Both cups were well fixed but were revised, one due to cup mal-positioning, one due to need in upsizing the articulation. 14 other hips were revised but these cups were well fixed and not revised; 9 loosened stems (most were cemented Elite plus stems), 5 PE wear and osteolysis (all were conventional PE). At 20 years, the survivorship of cups was 96.1%. Changes in lateral opening angle, vertical and horizontal migration distances were 0.44±1.59°, 0.01±1.52mm and -0.32±1.47mm respectively, without statistical significance. This study provided evidence of excellent long-term survivorship of cementless cup without screw holes. Immediate postoperative weight-bearing also did not lead to cup migration in the long-term


Bone & Joint Research
Vol. 13, Issue 5 | Pages 226 - 236
9 May 2024
Jürgens-Lahnstein JH Petersen ET Rytter S Madsen F Søballe K Stilling M

Aims. Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear. Methods. A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay. Results. At mean six years’ follow-up, the PE wear rate was 0.08 mm/year (95% confidence interval 0.06 to 0.09 mm/year). PE inlay external rotation was below the precision limit and did not influence PE wear. Varus knee alignment did not influence PE wear (p = 0.874), but increased tibial component total translation (p = 0.041). Conclusion. The PE inlay was well fixed and there was no relationship between PE stability and PE wear. The PE wear rate was low and similar in the medial and lateral compartments. Varus knee alignment did not influence PE wear. Cite this article: Bone Joint Res 2024;13(5):226–236


Bone & Joint Open
Vol. 4, Issue 10 | Pages 782 - 790
18 Oct 2023
Hamilton DF Gaston P Macpherson GJ Simpson P Clement ND

Aims

The primary aim of this study is to assess the survival of the uncemented hydroxyapatite (HA) coated Trident II acetabular component as part of a hybrid total hip arthroplasty (THA) using a cemented Exeter stem. The secondary aims are to assess the complications, joint-specific function, health-related quality of life, and radiological signs of loosening of the acetabular component.

Methods

A single-centre, prospective cohort study of 125 implants will be undertaken. Patients undergoing hybrid THA at the study centre will be recruited. Inclusion criteria are patients suitable for the use of the uncemented acetabular component, aged 18 to 75 years, willing and able to comply with the study protocol, and provide informed consent. Exclusion criteria includes patients not meeting study inclusion criteria, inadequate bone stock to support fixation of the prosthesis, a BMI > 40 kg/m2, or THA performed for pain relief in those with severely restricted mobility.


Aims

The tibial component of total knee arthroplasty can either be an all-polyethylene (AP) implant or a metal-backed (MB) implant. This study aims to compare the five-year functional outcomes of AP tibial components to MB components in patients aged over 70 years. Secondary aims are to compare quality of life, implant survivorship, and cost-effectiveness.

Methods

A group of 130 patients who had received an AP tibial component were matched for demographic factors of age, BMI, American Society of Anesthesiologists (ASA) grade, sex, and preoperative Knee Society Score (KSS) to create a comparison group of 130 patients who received a MB tibial component. Functional outcome was assessed prospectively by KSS, quality of life by 12-Item Short-Form Health Survey questionnaire (SF-12), and range of motion (ROM), and implant survivorships were compared. The SF six-dimension (6D) was used to calculate the incremental cost effectiveness ratio (ICER) for AP compared to MB tibial components using quality-adjusted life year methodology.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 494 - 502
20 Jul 2022
Kwon HM Lee J Koh Y Park KK Kang K

Aims

A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes.

Methods

ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions.


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1791 - 1801
1 Dec 2021
Bhalekar RM Nargol ME Shyam N Nargol AVF Wells SR Collier R Pabbruwe M Joyce TJ Langton DJ

Aims. The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs). Methods. At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays. Results. A total of 114 explanted fixed-bearing TKAs were examined. This included 76 used with contemporary PE inserts which were compared with 15 used with older generation PEs. The Attune and NexGen (central locking) trays were found to have significantly less cement cover than Triathlon and PFC trays (peripheral locking group) (p = 0.001). The median planicity values of the PE inserts used with central locking trays were significantly greater than of those with peripheral locking inserts (205 vs 85 microns; p < 0.001). Attune and NexGen inserts had a characteristic pattern of backside deformation, with the outer edges of the PE deviating inferiorly, leaving the PE margins as the primary areas of articulation. Conclusion. Explanted TKAs with central locking mechanisms were significantly more likely to debond from the cement mantle. The PE inserts of these designs showed characteristic patterns of deformation, which appeared to relate to the manufacturing process and may be exacerbated in vivo. This pattern of deformation was associated with PE wear occurring at the outer edges of the articulation, potentially increasing the frictional torque generated at this interface. Cite this article: Bone Joint J 2021;103-B(12):1791–1801


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1695 - 1701
1 Nov 2021
Currier JH Currier BH Abdel MP Berry DJ Titus AJ Van Citters DW

Aims

Wear of the polyethylene (PE) tibial insert of total knee arthroplasty (TKA) increases the risk of revision surgery with a significant cost burden on the healthcare system. This study quantifies wear performance of tibial inserts in a large and diverse series of retrieved TKAs to evaluate the effect of factors related to the patient, knee design, and bearing material on tibial insert wear performance.

Methods

An institutional review board-approved retrieval archive was surveyed for modular PE tibial inserts over a range of in vivo duration (mean 58 months (0 to 290)). Five knee designs, totalling 1,585 devices, were studied. Insert wear was estimated from measured thickness change using a previously published method. Linear regression statistical analyses were used to test association of 12 patient and implant design variables with calculated wear rate.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 768 - 777
2 Nov 2020
Huang C Lu Y Hsu L Liau J Chang T Huang C

Aims

The material and design of knee components can have a considerable effect on the contact characteristics of the tibial post. This study aimed to analyze the stress distribution on the tibial post when using different grades of polyethylene for the tibial inserts. In addition, the contact properties of fixed-bearing and mobile-bearing inserts were evaluated.

Methods

Three different grades of polyethylene were compared in this study; conventional ultra high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (HXLPE), and vitamin E-stabilized polyethylene (VEPE). In addition, tibial baseplates with a fixed-bearing and a mobile-bearing insert were evaluated to understand differences in the contact properties. The inserts were implanted in neutral alignment and with a 10° internal malrotation. The contact stress, von Mises stress, and equivalent plastic strain (PEEQ) on the tibial posts were extracted for comparison.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 24 - 24
1 Aug 2020
Salimian A Slullitel P Grammatopoulos G Kreviazuk C Beaulé P Wilkinson JM
Full Access

The use of cementless acetabular components is currently the gold standard for treatment in total hip arthroplasty (THA). Porous coated cups have a low modulus of elasticity that enhances press-fit and a surface that promotes osseointegration. Monoblock acetabular cups represent a subtype of uncemented cup with the liner moulded into the metal shell, minimizing potential backside wear and eliminating the chance of mal-seating. The aim of this study was to compare the short-term clinical and radiographic performances of a modular cup with that of a monoblock cup, with particular interest in the advent of lucent lines and their correlation with clinical outcomes. In this multi-surgeon, prospective, randomized, controlled trial, 86 patients undergoing unilateral THA were recruited. Participants were randomized to either a porous-coated, modular metal-on-polyethylene (MoP) acetabular component (n=46) or a hydroxyapatite (HA)- and titanium-coated monoblock shell with ceramic-on-ceramic (CoC) bearing (n=42). The porous-coated cup had an average pore size of 250 microns with an average volume porosity of 45%, whereas the monoblock shell had an average pore size of 300 microns with an average volume porosity of 48% and a HA coating thickness of 80 nm. There were no baseline demographic differences between both groups regarding sex, age, body mass index (BMI), or American Society of Anaesthesia (ASA) class (p>0.05). All of the sockets were under-reamed by 1 mm. Radiographs and patient-reported outcome measures (PROMs), including modified Harris Hip Score (mHHS), Western Ontario and McMaster Universities Arthritis Index (WOMAC) and University of California at Los Angeles (UCLA) Hip Score, were available for evaluation at a minimum of 2 years of follow-up. A radiolucent distance between the cup and acetabulum of ≥0.5 mm was defined as gap if it was diagnosed from outset or as radiolucency if it had sclerotic edges and was found on progressive x-ray analyses. Thirty-two gaps (69%) were found in the modular cup group and 28 (6%) in the monoblock one (p=0.001). Of the former, 17 filled the gaps whereas 15 turned into a radiolucency at final assessment. Of the latter, only 1 of the gaps turned into a radiolucency at final follow-up (p 0.05) in both groups. Only the porous-coated cup was an independent predictor of lucent lines (OR:0.052, p=0.007). No case underwent revision surgery due to acetabular loosening during the study period. Only 2 cases of squeaking were reported in the CoC monoblock shell. Both porous-coated modular and hydroxyapatite-coated monoblock cups showed successful clinical results at short-term follow-up, however, the former evidenced a significantly higher rate of radiolucent line occurrence, without any association with PROMs. Since these lines indicate the possibility of future cup loosening, longer follow-up and assessment are necessary


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 113 - 113
1 Feb 2020
Wimmer M Ngai V Kunze J Cip J Laurent M Jacobs J
Full Access

Introduction. Ideally, standardized wear testing protocols replicate the in vivo motions and forces of TKR patients. In a previous study with 30 TKR patients, two distinct in vivo gait patterns emerged, one characterized as having low anteroposterior (AP-L) motion and the other high anteroposterior (AP-H) motion. The aim of this study was to determine the effect of the two in vivo-determined gait patterns on total and backside insert wear in comparison with the ISO standard 14243-3. In order to differentiate and accurately quantify topside and backside wear, a novel technique was employed where different lanthanide tracers are incorporated into the polyethylene during manufacture. Materials and Methods. Components from the Zimmer NexGen CR Knee Replacement System were used. Europium (Eu) and Gadolinium (Gd)-stearates were mechanically mixed with GUR1050 UHMWPE resin to obtain two tracer-UHMWPE resins containing 49.1±1.5 ppm Eu and 68.8±1.6 ppm Gd, respectively. 12 grams of the Eu-doped resin was placed on the bottom, 10 grams of virgin GUR1050 resin was placed in the middle, and 10 grams of Gd-doped resin was placed on the top to mold NexGen CR tibial inserts. The backside was then machined to interlock with the tibial baseplate. The minimum insert thickness was 10 mm. All inserts were packaged in nitrogen and gamma sterilized. The wear test was conducted on a 4-station knee simulator in displacement-control mode. Simulator input was obtained from ISO 14243-3 and from gait of 30 NexGen TKR subjects, previously categorized into low (AP-L) and high (AP-H) anteroposterior motion groups. Per station, each insert was sequentially subjected to ISO, AP-L, AP-H motion for 2 Mc at 1 Hz. Subsequently, the ISO profile was repeated. Tibial inserts were weighed and lubricant samples were taken after every 0.5 Mc interval. Knowing the Eu and Gd concentrations from ICP-MS analysis, and normalizing those to the concentrations in the polyethylene inserts, the localized (Eu – backside; Gd – topside) wear was calculated. Wear particle analysis was conducted following established protocols. Results. For all tested liners (n=4 + soak) during the three tested motion profiles, the chemically calculated wear correlated closely with the gravimetrically determined wear (R. 2. »0.8), with slopes not different from 1. Both in vivo motion groups displayed higher wear rates than the ISO group following the order of the AP motion amplitudes (Figure). Backside wear for ISO constituted 2.76% ± 0.90% (mean ± SE) of the total wear, increasing significantly to 15.8 ± 3.2% for AP-L and further increasing to 19.3 ± 0.95% for AP-H (p<.001). The mean wear particle sizes were under 200 nm for all three motion patterns, being largest for the AP-H gait protocol (Table). Discussion. Both in vivo motion groups displayed higher wear rates than the group tested per ISO standard 14243-3. Interestingly backside wear was affected the most and increased 4.5 to 6-fold over ISO. Testing for the proportion of backside wear across various activities of daily living may therefore be an important consideration in evaluating knee prostheses wear and could be facilitated by this new tracer technology. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 64 - 64
1 Feb 2020
Darwish O Grover H McHugh D Carlson E Dacus E Van Citters D
Full Access

Introduction. Large-scale retrieval studies have shown backside wear in tibial inserts is dependent on the surface roughness of the tibial tray. Manufacturers acknowledge this design factor and have responded with the marketing of mirror-finished trays, which are clinically proven to have lower wear rates in comparison to historically “rough” (e.g. grit blasted) trays. While the relationship between wear and surface roughness has been explored in other polymer applications, the quantitative dependence of backside wear rate on quantitative surface finish has not yet been established for modern devices. The present study evaluates small-excursion polyethylene wear on pucks of a variety of surface roughnesses. The objective of this study is to determine where inflection points exist in the relationship between surface roughness and wear rate. Materials and Methods. An AMTI Orthopod, 6-station pin on disk tribotest was designed to mimic worst-case in vivo backside wear conditions based on published retrieval analyses. Titanium (Ti6Al4V) pucks with six different surface roughness preparations (Sa ranges from 0.06 um to 1.06 um) were characterized with white light profilometry. Never implanted polyethylene tibial inserts (never irradiated, EtO sterilized) were machined into 6 mm diameter cylindrical pins. Fretting-type motion was conducted in a 2mm square pattern at 2Hz under 100 N constant force in 25% bovine serum lubricant for 1.35 million cycles in triplicate. Mass measurements were taken every 225 thousand cycles. Results. Over the range of surface roughness studied (Sa = 0.06 – 1.06 µm), wear rate grew logistically. The wear rate for highly polished titanium (Sa = 0.06 µm) was not statistically different from less-polished titanium with Sa of 0.14 µm (p > 0.1). Titanium pucks having the highest surface roughness (Sa > 0.5µm), removed material significantly faster than those with roughness less than 0.3µm. The results of these tests suggest that Ti trays with Sa less than 0.15µm may yield equivalent clinical backside wear results, while pucks with Sa greater than 0.15µm begin to have increased wear rates that may be clinically significant. The two pucks with Sa greater than 0.5 µm yielded wear rates failing to be statistically differentiable (p = 0.059), corresponding with the flattening of the logistic curve. Discussion. These results suggest that baseplates with Sa less than 0.15 µm may ultimately yield clinically equivalent outcomes. The wear rate curve changes slope between Sa 0.14 and 0.22 µm and continues to increase across the range of surface roughnesses studied. The wear rates on rough pucks (Sa > 0.5 µm) showed high variation, reducing the ability to distinguish the two statistically (p = 0.059). Further study will better distinguish wear properties at higher surface roughnesses. Conclusion. These findings demonstrate that there may be a range of finishes between a mirror polish and grit blast that may produce clinically equivalent wear rates. This work provides justification for further study into the relationship between backside wear, baseplate tray roughness, and material choices. For any figures or tables, please contact authors directly


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 220 - 226
1 Feb 2020
Clough TM Ring J

Aims

Arthroplasty for end-stage hallux rigidus (HR) is controversial. Arthrodesis remains the gold standard for surgical treatment, although is not without its complications, with rates of up to 10% for nonunion, 14% for reoperation and 10% for metatarsalgia. The aim of this study was to analyze the outcome of a double-stemmed silastic implant (Wright-Medical, Memphis, Tennessee, USA) for patients with end-stage HR.

Methods

We conducted a retrospective review of 108 consecutive implants in 76 patients, between January 2005 and December 2016, with a minimum follow-up of two years. The mean age of the patients at the time of surgery was 61.6 years (42 to 84). There were 104 females and four males. Clinical, radiological, patient reported outcome measures (PROMS) data, a visual analogue score (VAS) for pain, and satisfaction scores were collected.


Bone & Joint 360
Vol. 8, Issue 3 | Pages 3 - 7
1 Jun 2019
Patel NG Waterson HB Phillips JRA Toms AD


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 112 - 112
1 Jun 2018
Vince K
Full Access

The most recent Australian registry has a database of 547,407 knee arthroplasties, having added over 52,000 in 2016. Total knee arthroplasties (TKA) comprise 83.8%, revisions (RevTKA) 8.1% and “partials of all types” 8.1%. Since 2003, the percent of TKA has increased from 76.7%, RevTKA has stayed stable and partial replacements have declined from 14.5%. In the last year, however, TKA declined slightly. There is a slightly higher percentage of women (56.1%) undergoing TKA and this has remained very stable since 2003. Revision rates are slightly higher for men. Percentages of the youngest (<55) and oldest (>85) are small and stable. The 75–84 year olds have declined as 55–74 year olds have increased. This represents a gradual shift to earlier TKA surgery. More patella are resurfaced and this is a gradual trend with a cross over in 2010 when half were resurfaced. Computer navigation is progressively more popular and now accounts for almost 30% of cases. Cement fixation is also increasing and accounts for about 65% of cases. Crosslinked polyethylene is gradually replacing non crosslinked and in 2014 was used in 50% of cases. Revisions are performed most commonly for loosening and infection. Revision rates correlate directly with age. Loosening is the most common indication for revision in both genders, but males have a distinctly higher revision rate due to infection. Revision rates are slightly higher in all forms of mobile bearing than fixed bearing. Minimally constrained (cruciate retaining) devices are used in the majority of TKAs. Posterior stabilised implants are in slight decline, having peaked in about 2008–2010. Minimally constrained implants are in slight decline as medial pivot/medial congruent devices have been used more frequently. Revision rates are similar amongst all three implant types: PS implants are revised at a slightly higher rate. When an early Medial Pivot (MP) implant is excluded the newer version has better results. The reasons for revision are similar amongst all 3 groups with slightly higher loosening rates for PS designs. (Could this represent backside wear with older locking mechanisms, surface finish and non crosslinked poly?) The MP designs had slightly higher revision rates for “pain”, which is not recognised as a reasonable indication for revision. Revision rates are steadily higher for TKAs without patella resurfacing over 16 years, but the questions as to whether: i. the surgeries were secondary resurfacings or full revisions or ii. if secondary resurfacings eliminated pain are unknown. The combinations at greatest risk of revision were a posterior stabilised or medial pivot arthroplasty without patellar resurfacing. Cementless fixation leads to a higher revision rate. If age and computer navigation are evaluated in terms of revision rates, young patients with and without computer navigated arthroplasties failed at the highest rates, distinct from patients >65. However, if failure rates due only to loosening are evaluated, then computer navigation leads to a lower revision rate in the <65 group. This has been interpreted as the protective effect of better component position that only shows up in patients who use the arthroplasty more aggressively. Patient specific instrumentation (PSI) or Individual Designed Instrumentation (IDI) were revised at marginally higher rates than conventional instrumentation. Crosslinked polyethylene appears to be superior at 12 years (CRR= 4%) versus non crosslinked polyethylene (CRR>7%). This is the result of fewer failures due to loosening with crosslinked poly. The superiority of crosslinked poly was greater in the younger, more active patient


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 10 - 10
1 Mar 2017
Sisko Z Teeter M Lanting B Howard J McCalden R Vasarhelyi E
Full Access

Purpose. Previous retrieval studies demonstrate increased tibial baseplate roughness leads to higher polyethylene backside wear in total knee arthroplasty (TKA). Micromotion between the polyethylene backside and baseplate is affected by the locking mechanism design and can further increase backside wear. This study's purpose was to examine modern locking mechanisms influence, in the setting of both polished and non-polished tibial baseplates, on backside tibial polyethylene damage and wear. Methods. Five TKA models were selected with different tibial baseplate and/or locking mechanism designs. Six retrieval tibial polyethylenes from each TKA model were matched based on time in vivo (TIV), age at TKA revision, BMI, gender, number of times revised, and revision reason. Two observers visually assessed each polyethylene. Primary outcomes were visual damage scores, individual visual damage modes, and linear wear rates determined on micro-computed tomography (micro-CT) scan in mm/year. Demographics were compared by one-way ANOVA. Damage scores, damage modes, and linear wear were analyzed by the Kruskal-Wallis test and Dunn's multiple comparisons test. Results. There were no differences among the groups based on TIV (p=0.962), age (p=0.609), BMI (p=0.951), gender, revision number, or reason for revision. There was a significant difference across groups for visual total damage score (p=0.031). The polished tibial design with a partial peripheral capture locking mechanism and anterior constraint demonstrated a significantly lower score compared to one of the non-polished tibial designs with a complete peripheral-rim locking mechanism (13.0 vs. 22.0, p=0.019). Otherwise, mean total damage scores were not significant between groups. There were identifiable differences among the groups based on abrasions (p=0.006). The polished design with a tongue-in-groove locking mechanism demonstrated a significantly higher score compared to one of the designs with a non-polished baseplate (5.83 vs. 0.83, p=0.016). Only the two designs with non-polished baseplates demonstrated dimpling (5.67 and 8.67), which was significant when compared against all other groups (p<0.0001), but not against each other (p>0.99). No other significant differences were identified when examining burnishing, cold flow, scratching, or pitting. No polyethylene components exhibited embedded debris or delamination. There was a significant difference among groups for linear wear on micro-CT scanning (p=0.003). Two of the polished baseplate designs, one with the partial peripheral rim capture and one with the tongue-in-groove locking mechanism, demonstrated significantly lower wear rates than the non-polished design with a complete peripheral-rim locking mechanism (p=0.008 and p=0.032, respectively). There were no other differences in wear rates between groups. Conclusions. Total damage scores and wear rates were similar between all groups except when comparing two of the polished TKA designs to one of the non-polished baseplate designs. The other TKA model with a non-polished tibial baseplate had similar damage scores and wear rates to the polished designs, likely due to its updated locking mechanism. Dimpling was specific for non-polished tibial baseplates while abrasions were identified in the design with a tongue-in-groove locking mechanism. Our study showed even in the setting of a non-polished tibial baseplate, modern locking mechanisms can decrease backside damage and wear similar to that of other current generation TKA designs. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 34 - 34
1 Mar 2017
Mueller U Lee C Thomsen M Heisel C Kretzer J
Full Access

Introduction. This study was performed to investigate the failure mechanism of one specific hip arthroplasty cup design that has shown a high clinical failure rate. The aim of this study was to identify general design problems of this polyethylene inlay. Material and Methods. 55 consecutive retrievals of a cementless screw ring (Mecron) were collected. In any case a 32 mm ceramic head was used. All implants failed due to aseptic loosening. The follow-up of the implants was 3 to 16 years. We recorded backside wear, fatigue of the polyethylene at the flanges on the outer rim and at the cup opening (32 mm inner diameter). To assess the deformation of the inlay, the smallest and the median diameter of the cup opening were measured using a 3 dimensional coordinate measuring machine (Multisensor, Mahr, Germany). Results. 90% of the explants showed signs of wear on the backside of the inlay. Another typical and so far not described alteration was collar fatigue in 68%. 38% of the inlays showed rim creep: Examples for Backside wear, collar fatigue and rim creep are illustrated in Fig. 1. 90% had a diameter of 32.1 mm or less, and even 46% had a diameter less than 32 mm. Discussion. The investigated design is at the lower limit of the allowed machining tolerance of the cup opening (32 + 0.1 mm) and has no additional clearance (which some manufacturers add). It seems that the inlays yield at the dome because of the viscoelastic properties of polyethylene and the open dome area of the attached screw ring. This leads to excessive wear at the dome area and it triggers a “brake drum” effect at the cup opening. Thereby torsional stresses at the implant bone interface increase which lead to failure of the implant. To avoid this type of failure, PE inlays should have enough clearance at the cup opening and the inlay should have dome contact to the closed metal shell


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 13 - 13
1 Mar 2017
Mihalko W Lowell J Woodard E Arnholt C MacDonald D Kurtz S
Full Access

Introduction. Total knee arthroplasty (TKA) is a successful procedure for end stage arthritis of the knee that is being performed on an exponential basis year after year. Most surgeons agree that soft tissue balancing of the TKA is a paramount to provide a successful TKA. We utilized a set of retrieved lower extremities with an existing TKA to measure the laxity of the knee in all three planes to see if wear scores of the implants correlated to the laxity measured. This data has never been reported in the literature. Methods. IRB approval was obtained for the local retrieval program. Each specimen was retrieved after removing the skin, subcutaneous tissue and muscle from mid thigh to mid tibia. The femur, tibia and fibula were then transversely cut to remove the specimen for testing. Each specimen was then imaged using a flouroscopic imaging unit (OEC, Inc) in the AP, Lateral and sunrise views. These images were used to analyze whether there were any signs of osteolysis. Each specimen was mounted into a custom knee testing machine (Little Rock AR). Each specimen then was tested at full extension, 30, 60, and 90 degrees of flexion. At each flexion angle the specimen was subjected to a 10Nm varus and valgus torque, a 1.5Nm internal and external rotational torque and a 35N anterior and posterior directed force. Each specimen's implants were removed to record manufacturer and lot numbers. Polyethylene damage scores (Hood et al. JBMR 1983) were then calculated in the medial, lateral and backside of the polyethylene insert as well as on the medial and lateral femoral condyle. (Figure 1) Correlation coefficients were then calculated to show any relationship with soft tissue balancing in all three planes and wear scores. Results. No correlation > 0.4 existed for any surface damage on the polyethylene or femoral condyle to laxity in any plane (Figure 2). The highest correlations were found with backside wear (0.5) to internal and external rotational laxity. Two thirds of the specimens had more varus than valgus laxity in the coronal plane (p=0.03). Discussion/Conclusion. This is the first report of necropsy obtained retrievals where the soft tissue laxity of the knee was recorded. Although small numbers with different implant types the data shows that limited correlation exists between implant surface damage and increased laxity. The strongest correlation we found was backside wear to transverse plane laxity in flexion and extension, but this most likely is related to locking mechanism design. It seems in this set of implants that the soft tissue laxity did not affect implant bone interfaces as all were over 10 years from surgery. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 102 - 102
1 Dec 2016
Lewallen D
Full Access

Total knee replacement (TKR) is one of the most successful procedures in orthopaedic surgery. Although originally limited to more elderly and less active individuals, the inclusion criteria for TKR have changed, with ever younger, more active and heavier patients receiving TKR. Currently, wear debris related osteolysis and associated prosthetic loosening are major modes of failure for TKR implants of all designs. Initially, tibial components were cemented all polyethylene monoblock constructs. Subsequent long-term follow-up studies of these implants have demonstrated excellent durability in survivorship studies out to twenty years. Aseptic loosening of the tibial component was one of the main causes of failure in these implants. Cemented metal-backed nonmodular tibial components were subsequently introduced to allow for improved tibial load distribution and to protect osteoporotic bone. Long-term studies have established that many one-piece nonmodular tibial components have maintained excellent durability. Eventually, modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80s mainly to facilitate screw fixation for cementless implants. These designs also provided intraoperative versatility by allowing interchange of various polyethylene thicknesses, and to also aid the addition of stems and wedges. Other advantages included the reduction of inventory, and the potential for isolated tibial polyethylene exchanges as a simpler revision procedure. However, several studies have documented the high failure rate of isolated polyethylene exchange procedures, probably because technical problems related to the original components are left uncorrected. Since the late 1980s, the phenomena of polyethylene wear and osteolysis have been observed much more frequently when compared with earlier eras. The reasons for this increased prevalence of synovitis, progressive osteolysis, and severe polyethylene wear remain unclear, but there is no question that it was associated with the widespread use of both cementless and cemented modular tibial designs. Mayo Data. The study population included 10,601 adult patients with 14,524 primary TKA procedures performed at our institution between 1/1/1988 and 12/31/2005. Mean age was 68.7 years and 55% were female. Overall revision rates and revisions for loosening, wear/osteolysis were compared across different designs. Over an average 9 year follow-up, a total of 865 revisions, including 252 tibia revisions were performed, corresponding to overall survival of 89% (Confidence intervals (CI): 88%, 90%) at 15 years. In comparison to metal modular designs, risk of tibial revision was significantly lower with all-poly tibias (HR 0.3, 95% CI: 0.2, 0.5). Overall, posterior cruciate-retaining designs performed better than the posterior-stabilised designs (p=0.002). With any revision as the endpoint, there were no significant differences across the 18 designs examined. Similarly, there were no significant differences across the 18 designs when we considered revisions for aseptic loosening, wear, and osteolysis. Among patient characteristics, male gender, younger age, and higher BMI were all significantly associated with higher risk of revisions (p<0.008). Summary. Available data support the use of nonmodular tibial designs in TKA in order to prevent or reduce the chance of backside wear, third body particles from resulting metallic debris and associated polyethylene induced osteolysis. In all patients, (not just older individuals) use of an all polyethylene tibial component is an attractive and more cost effective alternative, and is associated with the best survivorship and lowest risk of revision


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 59 - 59
1 Dec 2016
Sisko Z Teeter M Lanting B Howard J McCalden R Naudie D MacDonald S Vasarhelyi E
Full Access

Previous retrieval studies demonstrate increased tibial baseplate roughness leads to higher polyethylene backside wear in total knee arthroplasty (TKA). Micromotion between the polyethylene backside and tibial baseplate is affected by the locking mechanism design and can further increase backside wear. The purpose of this study was to examine modern locking mechanisms, in the setting of both roughened and polished tibial baseplates, on backside tibial polyethylene wear. Five TKA models were selected, all with different tibial baseplate and/or locking mechanism designs. Six retrieval tibial polyethylenes from each TKA model were matched based on time in vivo (TIV), age at TKA revision, BMI, gender, number of times revised, and revision reason. Two observers scored each polyethylene backside according to a visual damage score and individual damage modes. Primary outcomes were mean damage score and individual damage modes. Demographics were compared by one-way ANOVA. Damage scores and modes were analysed by the Kruskal-Wallis test and Dunn's multiple comparisons test. There were no differences among the groups based on TIV (p=0.962), age (p=0.651), BMI (p=0.951), gender, revision number, or reason for revision. There was a significant difference across groups for mean total damage score (p=0.029). The polished tibial design with a partial peripheral capture locking mechanism and anterior constraint demonstrated a significantly lower score compared to one of the roughened tibial designs with a complete peripheral-rim locking mechanism (13.0 vs. 22.1, p=0.018). Otherwise, mean total damage scores were not significant between groups. As far as modes of wear, there were identifiable differences among the groups based on abrasions (p=0.005). The polished design with a tongue-in-groove locking mechanism demonstrated a significantly higher score compared to both groups with roughened tibial baseplates (5.83 vs. 0.83, p=0.024 and 5.83 vs. 0.92, p=0.033). Only the two designs with roughened tibial baseplates demonstrated dimpling (5.67 and 8.67) which was significant when compared against all other groups (p0.99). No other significant differences were identified when examining burnishing, cold flow, scratching, or pitting. No polyethylene components exhibited embedded debris or delamination. Total damage scores were similar between all groups except when comparing one of the polished TKA design to one of the roughened designs. The other TKA model with a roughened tibial baseplate had similar damage scores to the polished designs, likely due to its updated locking mechanism. Dimpling wear patterns were specific for roughened tibial baseplates while abrasive wear patterns were identified in the design with a tongue-in-groove locking mechanism. Our study showed even in the setting of a roughened tibial baseplate, modern locking mechanisms decrease backside wear similar to that of other current generation TKA designs


Bone & Joint 360
Vol. 5, Issue 5 | Pages 13 - 17
1 Oct 2016