Advertisement for orthosearch.org.uk
Results 1 - 20 of 170
Results per page:
Bone & Joint Open
Vol. 6, Issue 1 | Pages 3 - 11
1 Jan 2025
Shimizu A Murakami S Tamai T Haga Y Kutsuna T Kinoshita T Takao M

Aims

Excellent outcomes have been reported following CT-based robotic arm-assisted total hip arthroplasty (rTHA) compared with manual THA; however, its superiority over CT-based navigation THA (nTHA) remains unclear. This study aimed to determine whether a CT-based robotic arm-assisted system helps surgeons perform accurate cup placement, minimizes leg length, and offsets discrepancies more than a CT-based navigation system.

Methods

We studied 60 hips from 54 patients who underwent rTHA between April 2021 and August 2023, and 45 hips from 44 patients who underwent nTHA between January 2020 and March 2021 with the same target cup orientation at the Department of Orthopedic Surgery at Ozu Memorial Hospital, Japan. After propensity score matching, each group had 37 hips. Postoperative acetabular component position and orientation were measured using the planning module of the CT-based navigation system. Postoperative leg length and offset discrepancies were evaluated using postoperative CT in patients who have unilateral hip osteoarthritis.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1273 - 1283
1 Nov 2024
Mahmud H Wang D Topan-Rat A Bull AMJ Heinrichs CH Reilly P Emery R Amis AA Hansen UN

Aims

The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids.

Methods

Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 17 - 17
2 May 2024
Whitehouse M Patel R French J Beswick A Navvuga P Marques E Blom A Lenguerrand E
Full Access

Hip bearing surfaces materials are typically broadly reported in national registry (metal-on-polyethylene, ceramic-on-ceramic etc). We investigated the revision rates of primary total hip replacement (THR) reported in the National Joint Registry (NJR) by detailed types of bearing surfaces used. We analysed THR procedures across all orthopaedic units in England and Wales. Our analyses estimated all-cause and cause-specific revision rates. We identified primary THRs with heads and monobloc cups or modular acetabular component THRs with detailed head and shell/liner bearing material combinations. We used flexible parametric survival models to estimate adjusted hazard ratios (HR). A total of 1,026,481 primary THRs performed between 2003–2019 were included in the primary analysis (Monobloc cups: n=378,979 and Modular cups: n=647,502) with 20,869 (2%) of these primary THRs subsequently undergoing a revision episode (Monobloc: n=7,381 and Modular: n=13,488). Compared to implants with a cobalt chrome head and highly crosslinked polyethylene (HCLPE) cup, the overall risk of revision for monobloc acetabular implant was higher for patients with cobalt chrome or stainless steel head and non-HCLPE cup. The risk of revision was lower for patients with a delta ceramic head and HCLPE cup implant, at any post-operative period. Compared to patients with a cobalt chrome head and HCLPE liner primary THR, the overall risk of revision for modular acetabular implant varied non-constantly. THRs with a delta ceramic or oxidised zirconium head and HCLPE liner had a lower risk of revision throughout the entire post-operative period. The overall and indication-specific risk of prosthesis revision, at different time points following the initial implantation, is reduced for implants with a delta ceramic or oxidised zirconium head and a HCLPE liner/cup in reference to THRs with a cobalt chrome head and HCLPE liner/cup


Implants in total hip replacement (THR) are associated with different clinical and cost-effectiveness profiles,. We estimate the costs and outcomes for NHS patients in the year after THR associated with implant bearing materials using linked routinely collected data. We linked NJR primary elective THR patients for osteoarthritis to HES and National PROMs. We estimated health care costs, health-related quality of life indices, and revision risks, in the year after primary and revision THRs overall. We used generalised linear models adjusting for patient and hospital characteristics and estimated 10-year cumulative probability of revision. We imputed utilities using chained equations for half the sample with missing PROMS. We linked 577,973 elective primary THRs and 11,812 subsequent revisions. One year after primary THR, patients with the cemented THRs using cobalt chrome or stainless steel head with HCLPE liner/cup cost the NHS, on average, £13,101 (95%CI £13,080,£13,122), had an average quality-of-life score of 0.788 (95%CI 0.787,0.788), and a 10-year revision probability of 1.9% (95%CI 1.6,2.3). Compared to the reference, patients receiving a cemented THR with delta ceramic head and HCLPE liner/cup, hybrid THR with delta ceramic head and HCLPE liner/cup, and hybrid THR with alumina head and HCLPE liner/cup had lower 1-year costs (-£572 \[95% CI -£775,-£385\], -£346 \[-£501,-£192\], -£371 \[-£574,-£168\] respectively), better quality of life (0.007 \[95% CI 0.003,0.011\], 0.013 \[0.010,0.016\], 0.009 \[0.005,0.013\] respectively), and lower 10-year revision probabilities (1.4% \[1.03,2.0\], 1.5 \[1.3,1.7\], 1.6%\[1.2,2.1\] respectively). Implant bearing materials are associated with varying mean costs and health outcomes after primary THR. Ours is the first study to derive costs and health outcomes from large, linked databases using multiple imputation methods to deal with bias. Our findings are useful for commissioning and procurement decisions and to inform a subsequent cost-effectiveness model with more granular detail on THR implant types


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 59 - 66
1 Mar 2024
Karunaseelan KJ Nasser R Jeffers JRT Cobb JP

Aims

Surgical approaches that claim to be minimally invasive, such as the direct anterior approach (DAA), are reported to have a clinical advantage, but are technically challenging and may create more injury to the soft-tissues during joint exposure. Our aim was to quantify the effect of soft-tissue releases on the joint torque and femoral mobility during joint exposure for hip resurfacing performed via the DAA.

Methods

Nine fresh-frozen hip joints from five pelvis to mid-tibia cadaveric specimens were approached using the DAA. A custom fixture consisting of a six-axis force/torque sensor and motion sensor was attached to tibial diaphysis to measure manually applied torques and joint angles by the surgeon. Following dislocation, the torques generated to visualize the acetabulum and proximal femur were assessed after sequential release of the joint capsule and short external rotators.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 497 - 503
16 Aug 2023
Lee J Koh Y Kim PS Park J Kang K

Aims

Focal knee arthroplasty is an attractive alternative to knee arthroplasty for young patients because it allows preservation of a large amount of bone for potential revisions. However, the mechanical behaviour of cartilage has not yet been investigated because it is challenging to evaluate in vivo contact areas, pressure, and deformations from metal implants. Therefore, this study aimed to determine the contact pressure in the tibiofemoral joint with a focal knee arthroplasty using a finite element model.

Methods

The mechanical behaviour of the cartilage surrounding a metal implant was evaluated using finite element analysis. We modelled focal knee arthroplasty with placement flush, 0.5 mm deep, or protruding 0.5 mm with regard to the level of the surrounding cartilage. We compared contact stress and pressure for bone, implant, and cartilage under static loading conditions.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 14 - 14
10 Feb 2023
Vertesich K Staats K Böhler C Koza R Lass R Giurea A
Full Access

The use of rotating hinge (RH) prostheses for severe primary as well as revision arthroplasty is widely established. Aim of this study was to investigate long term results of a new RH prosthesis (EnduRo®, B Braun, Germany), which uses carbon-fiber reinforced poly-ether-ether-ketone (CFR PEEK) as a new bearing material, first time used in knee arthroplasty. Fifty-six consecutive patients, who received the EnduRo® RH prosthesis were included in this prospective study: 21 patients (37.5%) received the prosthesis as a primary total knee arthroplasty (TKA) and 35 patients (62.5%) underwent revision total knee arthroplasties (rTKA). Clinical and radiographic examinations were performed preoperatively as well as postoperatively after 3 and 12 months and annually thereafter. Min. Follow up was 7 and mean follow up 9,3 years. Clinical examination included Knee Society Score (KSS), Western Ontario and McMaster Osteoarthritis Index (WOMAC), Oxford Knee Score (OKS), and range of motion (ROM). Competing risk analysis was assessed for survival with respect to indication and failure mode. KSS, WOMAC, OKS, and ROM significantly improved from the preoperative to the follow up investigations (p < 0.0001). There was no difference in clinical outcome between the primary and the revision group. The overall cumulative incidence for revision for any reason was 23.6% and the cumulative incidence for complications associated with failure of the prothesis was 5.6% at 7 years, respectively. Complications occurred more frequently in the revision group (p = 0.002). The evaluated RH prosthesis provided reliable and durable results with a minimum follow-up of 7 years. Prosthesis survival was successful considering the complexity of cases. The use of this RH system in primary patients showed high survival rates. Long-term functional and clinical results proved to be satisfying in both revision and primary cases. No adverse events were associated with the new bearing material CFR-PEEK


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1313 - 1322
1 Dec 2022
Yapp LZ Clement ND Moran M Clarke JV Simpson AHRW Scott CEH

Aims

The aim of this study was to assess factors associated with the estimated lifetime risk of revision surgery after primary knee arthroplasty (KA).

Methods

All patients from the Scottish Arthroplasty Project dataset undergoing primary KA during the period 1 January 1998 to 31 December 2019 were included. The cumulative incidence function for revision and death was calculated up to 20 years. Adjusted analyses used cause-specific Cox regression modelling to determine the influence of patient factors. The lifetime risk was calculated as a percentage for patients aged between 45 and 99 years using multiple-decrement life table methodology.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 833 - 843
1 Jul 2022
Kayani B Baawa-Ameyaw J Fontalis A Tahmassebi J Wardle N Middleton R Stephen A Hutchinson J Haddad FS

Aims

This study reports the ten-year wear rates, incidence of osteolysis, clinical outcomes, and complications of a multicentre randomized controlled trial comparing oxidized zirconium (OxZr) versus cobalt-chrome (CoCr) femoral heads with ultra-high molecular weight polyethylene (UHMWPE) and highly cross-linked polyethylene (XLPE) liners in total hip arthroplasty (THA).

Methods

Patients undergoing primary THA were recruited from four institutions and prospectively allocated to the following treatment groups: Group A, CoCr femoral head with XLPE liner; Group B, OxZr femoral head with XLPE liner; and Group C, OxZr femoral head with UHMWPE liner. All study patients and assessors recording outcomes were blinded to the treatment groups. The outcomes of 262 study patients were analyzed at ten years’ follow-up.


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 341 - 351
1 Mar 2022
Fowler TJ Aquilina AL Reed MR Blom AW Sayers A Whitehouse MR

Aims

Total hip arthroplasties (THAs) are performed by surgeons at various stages in training with varying levels of supervision, but we do not know if this is safe practice with comparable outcomes to consultant-performed THA. Our aim was to examine the association between surgeon grade, the senior supervision of trainees, and the risk of revision following THA.

Methods

We performed an observational study using National Joint Registry (NJR) data. We included adult patients who underwent primary THA for osteoarthritis, recorded in the NJR between 2003 and 2016. Exposures were operating surgeon grade (consultant or trainee) and whether or not trainees were directly supervised by a scrubbed consultant. Outcomes were all-cause revision and the indication for revision up to ten years. We used methods of survival analysis, adjusted for patient, operation, and healthcare setting factors.


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1695 - 1701
1 Nov 2021
Currier JH Currier BH Abdel MP Berry DJ Titus AJ Van Citters DW

Aims. Wear of the polyethylene (PE) tibial insert of total knee arthroplasty (TKA) increases the risk of revision surgery with a significant cost burden on the healthcare system. This study quantifies wear performance of tibial inserts in a large and diverse series of retrieved TKAs to evaluate the effect of factors related to the patient, knee design, and bearing material on tibial insert wear performance. Methods. An institutional review board-approved retrieval archive was surveyed for modular PE tibial inserts over a range of in vivo duration (mean 58 months (0 to 290)). Five knee designs, totalling 1,585 devices, were studied. Insert wear was estimated from measured thickness change using a previously published method. Linear regression statistical analyses were used to test association of 12 patient and implant design variables with calculated wear rate. Results. Five patient-specific variables and seven implant-specific variables were evaluated for significant association with lower insert wear rate. Six were significant when controlling for other factors: greater patient age, female sex, shorter duration in vivo, polished tray, highly cross-linked PE (HXLPE), and constrained knee design. Conclusion. This study confirmed that knee wear rate increased with duration in vivo. Older patients and females had significantly lower wear rates. Polished modular tibial tray surfaces, HXLPE, and constrained TKA designs were device design factors associated with significantly reduced wear rate. Cite this article: Bone Joint J 2021;103-B(11):1695–1701


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1206 - 1214
1 Jul 2021
Tsikandylakis G Mortensen KRL Gromov K Mohaddes M Malchau H Troelsen A

Aims

We aimed to investigate if the use of the largest possible cobalt-chromium head articulating with polyethylene acetabular inserts would increase the in vivo wear rate in total hip arthroplasty.

Methods

In a single-blinded randomized controlled trial, 96 patients (43 females), at a median age of 63 years (interquartile range (IQR) 57 to 69), were allocated to receive either the largest possible modular femoral head (36 mm to 44 mm) in the thinnest possible insert or a standard 32 mm head. All patients received a vitamin E-doped cross-linked polyethylene insert and a cobalt-chromium head. The primary outcome was proximal head penetration measured with radiostereometric analysis (RSA) at two years. Secondary outcomes were volumetric wear, periacetabular radiolucencies, and patient-reported outcomes.


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 25 - 32
1 Jul 2021
Amstutz HC Le Duff MJ

Aims

Adverse local tissue reactions associated with abnormal wear considerably slowed down the general use of metal-on-metal (MoM) hip resurfacing arthroplasty (HRA), now limited to a few specialized centres. In this study, we provide the clinical results of 400 consecutive MoM HRAs implanted more than 20 years ago in one such centre.

Methods

A total of 355 patients (400 hips) were treated with Conserve Plus HRA between November 1996 and November 2000. There were 96 female (27%) and 259 male patients (73%). Their mean age was 48.2 years (SD 10.9). The University of California, Los Angeles (UCLA) hip scores and 12-item Short Form Survey (SF-12) quality of life scores were reported. Survivorship was assessed using Kaplan-Meier analyses.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 768 - 777
2 Nov 2020
Huang C Lu Y Hsu L Liau J Chang T Huang C

Aims

The material and design of knee components can have a considerable effect on the contact characteristics of the tibial post. This study aimed to analyze the stress distribution on the tibial post when using different grades of polyethylene for the tibial inserts. In addition, the contact properties of fixed-bearing and mobile-bearing inserts were evaluated.

Methods

Three different grades of polyethylene were compared in this study; conventional ultra high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (HXLPE), and vitamin E-stabilized polyethylene (VEPE). In addition, tibial baseplates with a fixed-bearing and a mobile-bearing insert were evaluated to understand differences in the contact properties. The inserts were implanted in neutral alignment and with a 10° internal malrotation. The contact stress, von Mises stress, and equivalent plastic strain (PEEQ) on the tibial posts were extracted for comparison.


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1491 - 1496
1 Nov 2020
Buddhdev PK Vanhegan IS Khan T Hashemi-Nejad A

Aims

Despite advances in the treatment of paediatric hip disease, adolescent and young adult patients can develop early onset end-stage osteoarthritis. The aims of this study were to address the indications and medium-term outcomes for total hip arthroplasty (THA) with ceramic bearings for teenage patients.

Methods

Surgery was performed by a single surgeon working in the paediatric orthopaedic unit of a tertiary referral hospital. Databases were interrogated from 2003 to 2017 for all teenage patients undergoing THA with a minimum 2.3 year follow-up. Data capture included patient demographics, the underlying hip pathology, number of previous surgeries, and THA prostheses used. Institutional ethical approval was granted to contact patients for prospective clinical outcomes and obtain up-to-date radiographs. In total, 60 primary hips were implanted in 51 patients (35 female, 16 male) with nine bilateral cases. The mean age was 16.7 years (12 to 19) and mean follow-up was 9.3 years (2.3 to 16.8).


Bone & Joint Research
Vol. 9, Issue 8 | Pages 515 - 523
1 Aug 2020
Bergiers S Hothi H Henckel J Eskelinen A Skinner J Hart A

Aims

The optimum clearance between the bearing surfaces of hip arthroplasties is unknown. Theoretically, to minimize wear, it is understood that clearances must be low enough to maintain optimal contact pressure and fluid film lubrication, while being large enough to allow lubricant recovery and reduce contact patch size. This study aimed to identify the relationship between diametrical clearance and volumetric wear, through the analysis of retrieved components.

Methods

A total of 81 metal-on-metal Pinnacle hips paired with 12/14 stems were included in this study. Geometrical analysis was performed on each component, using coordinate and roundness measuring machines. The relationship between their as-manufactured diametrical clearance and volumetric wear was investigated. The Mann-Whitney U test and unpaired t-test were used, in addition to calculating the non-parametric Spearman's correlation coefficient, to statistically evaluate the acquired data.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 43 - 43
1 Jul 2020
Berkmortel C Johnson JA Langohr GD King GJ DeDecker S
Full Access

Hemiarthroplasty is a common procedure that is an attractive alternative to total arthroplasty because it conserves natural tissue, allows for quicker recovery, and has a lower cost. One significant issue with hemiarthroplasties is that they lead to accelerated wear of the opposing native cartilage, likely due to the high stiffness of the implant. The purpose of this study was to investigate the range of currently available biomaterials for hemiarthroplasty applications. We employed a finite-element (FE) model of a radial head implant against the native capitellum as our joint model. The FE model was developed in ABAQUS v6.14 (Dassault Systèmes Simulia Corp., Providence, RI, USA). A solid axisymmetric concave implant with seven different materials and the native radial head were evaluated, six modelled as elastic materials with different Young's moduli (E) and Poisson's Ratios (ν), and one modelled as a Mooney-Rivlin hyperelastic material. The materials investigated were CoCr (E=230 GPa, ν = 0.3), PEEK (E=3.7 GPa, ν = 0.36), HDPE (E=2.7 GPa, ν = 0.42), UHMWPE (E=0.69 GPa, ν = 0.49), Bionate 75D (E=0.288 GPa, ν = 0.39), Bionate 55D (E=0.039 GPa, ν = 0.45), and Bionate 80A (modelled as a Mooney-Rivlin hyperelastic material). A load of 100 N was applied to the radius through the center of rotation representing a typical load through the radius. The variable of interest was articular contact stress on the capitellum. The CoCr implant had a maximum contact stress over 114% higher than the native radial head. By changing the material to lower the stiffness of the implant, the maximum contact stress was 24%, 70%, 105%, 111%, 113%, and 113% higher than the native radial head for Bionate 80A, Bionate 55D, Bionate 75D, UHMWPE, HDPE, and PEEK respectively. This work shows that lowering implant stiffness can reduce the contact stress on cartilage in hemiarthroplasty implants. By changing the material below a Young's modulus of ∼100 MPa elevated stresses on the capitellum can be markedly reduced and hence potentially reduce or prevent degenerative changes of the native articulating cartilage. Low stiffness implant materials are not a novel concept, but to date there have been few that investigate materials (such as Bionate) as a potential load bearing material for implant applications. Further work is required to assess the efficacy of these materials for articular bearing applications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 85 - 85
1 Feb 2020
Dennis D Pierrepont J Madurawe C Lee G Shimmin A
Full Access

Introduction. It is well accepted that larger heads provide more stability in total hip arthroplasty. This is due to an increase in jump height providing increased resistance to subluxation. However, other implant parameters also contribute to the bearing's stability. Specifically, the liner's rim design and the centre of rotation relative to the liner's face. Both these features contribute to define the Cup Articular Arc Angle (CAAA). The CAAA describes the degree of dysplasia of the acetabular liner, and plays an important role in defining the jump height. The aim of this study was to determine the difference in jump height between bearing materials with a commonly used acetabular implant system. Methods. From 3D models of the Trinity acetabular implant system (Corin, UK), the CAAA was measured in CAD software (SolidWorks, Dassault Systems, France) for the ceramic, poly and modular dual mobility (DM) liners, for cup sizes 46mm to 64mm. The most commonly used bearing size was used in the analysis of each cup size. For the ceramic and poly liners, a 36mm bearing was used for cups 50mm and above. For the 46mm and 48mm cups, a 32mm bearing was used. The DM liners were modelled with the largest head size possible. Using a published equation, the jump height was calculated for each of the three bearing materials and each cup size. Cup inclination and anteversion were kept constant. Results. CAAA varied substantially between cup sizes and bearing materials. The mean CAAA for the ceramic, poly and DM bearings were 166°, 175° and 186°, respectively. Consequently, over the entire size range, the ceramic liners had the lowest mean jump height of 12.9mm. In comparison to the ceramic liner, there was a mean 10% increase in jump height when transitioning to a poly (14.2mm), and a further 30% increase when transitioning from a poly to the dual mobility bearing (18.5mm) [Fig.1]. However, the difference in jump heights between bearings was variable, and dependent on cup size. Discussion. It is well understood that increasing head size increases stability in THA. However, other implant design parameters contribute to stability. With this particular implant system, the poly bearing had a greater jump height than the ceramic for cup sizes 50mm and above. The DM bearing improved jump height over the ceramic and poly by a mean of 41% and 30%, respectively. In conclusion, different liners have different design features that affect jump height. Consequently, not all bearings of identical head size are the same. We encourage a dialogue with your implant provider to understand the differences in CAAA between cup sizes and bearing materials. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 46 - 46
1 Feb 2020
Currier J Currier B Jevsevar K Van Citters D
Full Access

Introduction. In an effort to provide a TKA bearing material that balances resistance to wear, mechanical failure and oxidation, manufacturers introduced antioxidant polyethylene. In many designs, this is accomplished through pre-blending the polymer with the antioxidant before consolidation and radiation crosslinking. This study reports the wear performance (in terms of thickness change) of a hindered phenol (PBHP) UHMWPE from analysis of an early series of knee retrievals and explores these questions: 1) What is early-time performance of this new bearing material? 2) Is there a difference in performance between fixed and mobile bearings in this design? 3) How does quantitative surface analysis help understand performance at the insert-tray modular interface?. Methods. A series of 100 consecutive Attune™ knee inserts (DePuy Synthes, Warsaw, IN) received at revision by an IRB approved retrieval laboratory between September 2014 and March 2019 were investigated. In vivo duration was 0–52 months. Both the fixed bearing design (n=74) and the rotating platform mobile bearing design (n=26) were included. Dimensional change was determined by measurement of each insert and compared to the as-manufactured dimensions, provided by the manufacturer. The insert-tray interfaces under the loaded bearing zones were analyzed with light interferometry using an optical surface profiler (NewView™ 7300, Zygo, Middlefield, CT). Statistical analyses to explore relationships between measured variables were conducted using SPSS. Results. Mean total through-thickness change of the inserts was 0.052 mm. Mean rate of thickness change for all inserts having in vivo duration > 12 months was 0.038 mm/year (fixed bearing 0.042, mobile bearing 0.029 mm/year). The rate of thickness change for all inserts showed a decreasing trend with duration that was not statistically significant, (rho -.244, p=.094); however, the mobile bearing cohort alone showed a significant decrease in thickness change rate with duration (rho= −.659; p=.014). Surface roughness (Sa) of the distal surface of the UHMWPE inserts under the bearing areas averaged 1.24 µm (range 0.12 – 8.53) and peak-to-valley height (PV) averaged 27.1 µm (range 4 – 95). Sa and PV both showed a decreasing trend with duration in vivo in the mobile bearing inserts, but that trend did not reach statistical significance (p= 0.05 criterion). Neither Sa nor PV showed correlation with measured thickness change. Discussion. This study indicates that the rate of thickness change of a relatively new antioxidant cross-linked bearing material is very similar to other reported wear rates of crosslinked knee inserts. Lower wear rate of mobile bearing inserts compared to fixed bearings also is consistent with earlier published studies. Direct comparison between quantitative thickness change and objective, quantitative surface metrology on the same series brings new information to the arena of measuring and reporting “wear” of UHMWPE and underscores the importance of the distinction between visual damage and actual thinning of the bearing. The systematic surface analysis of the modular interfaces showing that surface roughness (Sa) and total damage feature topography (PV) trend downward with in vivo duration of mobile bearings supports the hypothesis that relative motion at that interface may ‘polish out’ the surface topography over time. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 23 - 23
1 Feb 2020
Van De Kleut M Athwal G Yuan X Teeter M
Full Access

Introduction. Reverse total shoulder arthroplasty (RTSA) is a semi-constrained joint replacement with an articulating cobalt-chromium glenosphere and ultra-high molecular weight polyethylene (PE). Because of its limited load bearing, surgeons and implant manufacturers have not elicited the use of highly cross-linked PE in the shoulder, and to date have not considered excessive PE wear in the reverse shoulder a primary concern. As the number of shoulder procedures is expected to grow exponentially in the next decade, however, it is important to evaluate how new designs and bearing materials interact and to have an understanding of what is normal in well-functioning joint replacements. Currently, no in vivo investigation into RTSA PE wear has been conducted, with limited retrieval and simulation studies. In vitro and in silico studies demonstrate a large range in expected wear rates, from 14.3 mm. 3. /million cycles (MC) to 126 mm. 3. /MC, with no obvious relationship between wear rate and polyethylene diameter. The purpose of this study is to evaluate, for the first time, both volumetric and linear wear rates in reverse shoulder patients, with a minimum six-year follow-up using stereo radiographic techniques. Methods. To date, seven patients with a self-reported well-functioning Aequalis Reversed II (Wright Medical Group, Edina, MN, USA) RTSA implant system have been imaged (mean years from surgery = 7.0, range = 6.2 to 9). Using stereo radiographs, patients were imaged at the extents of their range of motion in internal and external rotation, lateral abduction, forward flexion, and with their arm at the side. Multiple arm positions were used to account for the multiple wear vectors associated with activities of daily living and the shoulder's six degrees of motion. Using proprietary software, the position and orientation of the polyethylene and glenosphere components were identified and their transformation matrices recorded. These transformation matrices were then applied to the CAD models of each component, respectively, and the apparent intersection of the glenosphere into the PE recorded. Using previously validated in-house software, volumetric and maximum linear wear depth measurements were obtained. Linear regression was used to identify wear rates. Results. The volumetric and linear wear rates for the 36 mm PE liners (n = 5) were 39 mm. 3. /y (r. 2. = 0.86, range = 24 to 42 mm. 3. /y) and 0.09 mm/y (r. 2. = 0.96, range = 0.08 to 0.11 mm/y), respectively. Only two patients with 42 mm PE liners were evaluated. For these, volumetric and linear wear rates were 110 mm. 3. /y (r. 2. = 0.81, range = 83 to 145 mm. 3. /y) and 0.17 mm/y (r. 2. = 0.99, range = 1.12 to 1.15 mm/y), respectively. Conclusion. For the first time, PE wear was evaluated in the reverse shoulder in vivo. More patients are required for conclusive statements, but preliminary results suggest first order volumetric and linear wear rates within those predicted by simulation studies. It is interesting to note the increased wear with larger PE size, likely due to the increased contact area between congruent faces and the potential for increased sliding distance during arm motion