Advertisement for orthosearch.org.uk
Results 1 - 20 of 840
Results per page:
Bone & Joint Open
Vol. 6, Issue 1 | Pages 82 - 92
14 Jan 2025
Ranieri R Borroni M Delle Rose G Conti M Garofalo R Castagna A

Aims

The aim of this study was to report long-term clinical outcomes of a modern convertible metal-backed glenoid (MBG) in total shoulder arthroplasty (TSA).

Methods

After a minimum of 15 years, a previously studied cohort of 35 patients who received a modern convertible MBG during the period 1996 to 2005 was contacted for clinical and radiological follow-up. At last follow-up, patients were evaluated radiologically and clinically according to the Constant Score, Simple Shoulder Test, and visual analogue scale for pain. Complications and revisions were recorded, and survival analysis was performed.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 36 - 36
22 Nov 2024
Goumenos S Hipfl C Michalski B Pidgaiska O Mewes M Stöckle U Perka C Meller S
Full Access

Background

Postoperative dislocation is one of the main surgical complications and the primary cause for revision surgery after 2-stage implant exchange due to periprosthetic infection of a total hip arthroplasty.

Objective

The aims of our study were (1) to determine the incidence of dislocation after two-stage THA reimplantation without spacer placement, (2) to evaluate relevant risk factors for dislocation and (3) to assess the final functional outcome of those patients.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 10 - 10
14 Nov 2024
Zderic I Kraus M Rossenberg LV Puls L Pastor T Gueorguiev B Richards G Pape HC Pastor T
Full Access

Introduction

The main postoperative complications in fixation of ulna shaft fractures are non-union and implant irritation using currently recommended 3.5-mm locking compression plates. An alternative approach using a combination of two smaller plates in orthogonal configuration has been proposed. The aim of this study was to compare the biomechanical properties of a single 3.5-mm locking compression plate versus double plating using one 2.5-mm and one 2.0-mm mandible plate in a human ulna shaft fracture model.

Method

Eight pairs human ulnar specimens with a standardized 10-mm fracture gap were pairwise assigned for instrumentation with either a single 3.5-mm plate placed posteriorly, or for double plating using a 2.5-mm and a 2.0-mm mandible plate placed posteriorly under the flexor muscles and laterally under the extensor muscles. All constructs were initially non-destructively biomechanically tested in axial compression, torsion, and bending, which was followed by cyclic torsional loading to failure. Interfragmentary movements were monitored by means of optical motion tracking.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 52 - 52
14 Nov 2024
Lund M Shayestehpour H
Full Access

Introduction

This research aims to enhance the control of intricate musculoskeletal spine models, a critical tool for comprehending both healthy and pathological spinal conditions. State-of-the-art musculoskeletal spine models incorporate segments for all vertebra, each possessing 3 degrees-of-freedom (DOF). Manually defining the posture with this amount of DOFs presents a significant challenge. The prevalent method of equally distributing the spine's overall rotation among the vertebrae often proves to be an inadequate assumption, particularly when dealing with the entire spine.

Method

We have engineered a comprehensive non-linear spine rhythm and the requisite tools for its implementation in widely utilized musculoskeletal modelling software (1). The rhythm controls lateral bending, axial rotation, and flexion/extension. The mathematical and implementation details of the rhythm are beyond this abstract, but it's noteworthy that the implementation accommodates non-linear rhythms. This means, for example, that one set of rhythm coefficients is used for flexion and another for extension. The rhythm coefficients, which distinguish the movement along the spine, were derived from a review of spine literature. The values for spine and vertebra range-of-motion (ROM) vary significantly in published studies, and no complete dataset was found in any single study. Consequently, the rhythm presented here is a composite, designed to provide the most consistent and average set of rhythm coefficients.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 64 - 64
14 Nov 2024
Hudson P Federer S Dunne M Pring C Smith N
Full Access

Introduction

Weight is a modifiable risk factor for osteoarthritis (OA) progression. Despite the emphasis on weight loss, data quantifying the changes seen in joint biomechanics are limited. Bariatric surgery patients experience rapid weight loss. This provides a suitable population to study changes in joint forces and function as weight changes.

Method

10 female patients undergoing gastric bypass or sleeve gastrectomy completed 3D walking gait analysis at a self-selected pace, pre- and 6 months post-surgery. Lower limb and torso kinematic data for 10 walking trials were collected using a Vicon motion capture system and kinetics using a Kistler force plate. An inverse kinematic model in Visual 3D allowed for no translation of the hip joint centre. 6 degrees of freedom were allowed at other joints. Data were analysed using JASP with a paired samples t-test.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 37 - 37
14 Nov 2024
Zderic I Kraus M Axente B Dhillon M Puls L Gueorguiev B Richards G Pape HC Pastor T Pastor T
Full Access

Introduction

Distal triceps tendon rupture is related to high complication rates with up to 25% failures. Elbow stiffness is another severe complication, as the traditional approach considers prolonged immobilization to ensure tendon healing. Recently a dynamic high-strength suture tape was designed, implementing a silicone-infused core for braid shortening and preventing repair elongation during mobilization, thus maintaining constant tissue approximation. The aim of this study was to biomechanically compare the novel dynamic tape versus a conventional high-strength suture tape in a human cadaveric distal triceps tendon rupture repair model.

Method

Sixteen paired arms from eight donors were used. Distal triceps tendon rupture tenotomies and repairs were performed via the crossed transosseous locking Krackow stitch technique for anatomic footprint repair using either conventional suture tape (ST) or novel dynamic tape (DT). A postoperative protocol mimicking intense early rehabilitation was simulated, by a 9-day, 300-cycle daily mobilization under 120N pulling force followed by a final destructive test.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 36 - 36
14 Nov 2024
Zderic I Kraus M Rossenberg LV Gueorguiev B Richards G Pape HC Pastor T Pastor T
Full Access

Introduction. Tendon ruptures are a common injury and often require surgical intervention to heal. A refixation is commonly performed with high-strength suture material. However, slipping of the thread is unavoidable even at 7 knots potentially leading to reduced compression of the sutured tendon at its footprint. This study aimed to evaluate the biomechanical properties and effectiveness of a novel dynamic high-strength suture, featuring self-tightening properties. Method. Distal biceps tendon rupture tenotomies and subsequent repairs were performed in sixteen paired human forearms using either conventional or the novel dynamic high-strength sutures in a paired design. Each tendon repair utilized an intramedullary biceps button for radial fixation. Biomechanical testing aimed to simulate an aggressive postoperative rehabilitation protocol stressing the repaired constructs. For that purpose, each specimen underwent in nine sequential days a daily mobilization over 300 cycles under 0-50 N loading, followed by a final destructive test. Result. After the ninth day of cyclic loading, specimens treated with the dynamic suture exhibited significantly less tendon elongation at both proximal and distal measurement sites (-0.569±2.734 mm and 0.681±1.871 mm) compared to the conventional suture group (4.506±2.169 mm and 3.575±1.716 mm), p=0.003/p<0.002. Gap formation at the bone-tendon interface was significantly lower following suturing using dynamic suture (2.0±1.6 mm) compared to conventional suture (4.5±2.2 mm), p=0.04. The maximum load at failure was similar in both treatment groups (dynamic suture: 374± 159 N; conventional suture: 379± 154 N), p=0.925. The predominant failure mechanism was breakout of the button from the bone (dynamic suture: 5/8; conventional suture: 6/8), followed by suture rupturing, suture unraveling and tendon cut-through. Conclusion. From a biomechanical perspective, the novel dynamic high-strength suture demonstrated higher resistance against gap formation at the bone tendon interface compared to the conventional suture, which may contribute to better postoperative tendon integrity and potentially quicker functional recovery in the clinical setting


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 51 - 51
14 Nov 2024
Shayestehpour H Shayestehpour MA Wong C Bencke J Rasmussen J
Full Access

Introduction

Adolescent Idiopathic Scoliosis (AIS) is a three-dimensional deformity of the spine with unclear etiology. Due to the asymmetry of lateral curves, there are differences in the muscle activation between the convex and concave sides. This study utilized a comprehensive thoracic spine and ribcage musculoskeletal model to improve the biomechanical understanding of the development of AIS deformity and approach an explanation of the condition.

Methods

In this study, we implemented a motion capture model using a generic rigid-body thoracic spine and ribcage model, which is kinematically determinate and controlled by spine posture obtained, for instance, from radiographs. This model is publicly accessible via a GitHub repository. We simulated gait and standing models of two AIS (averaging 15 years old, both with left lumbar curve and right thoracic curve averaging 25 degrees) and one control subject. The marker set included extra markers on the sternum and the thoracic and lumbar spine. The study was approved by the regional Research Ethics Committee (Journal number: H17034237).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 20 - 20
14 Nov 2024
Einafshar MM Massaad E Kiapour A
Full Access

Introduction

The biomechanical behavior of lumbar spine instrumentation is critical in understanding its efficacy and durability in clinical practice. In this study, we aim to compare the biomechanics of the lumbar spine instrumented with single-level posterior rod and screw systems employing two distinct screw designs: paddle screw versus conventional screw system.

Method

A fully cadaveric-validated 3D ligamentous model of the lumbopelvic spine served as the foundation for our comparative biomechanical analysis1. To simulate instrumentation, the intact spine was modified at the L4L5 level, employing either paddle screws or standard pedicle screws (SPS). The implants were composed of Ti-6AL-4V. Fixation at the S1 ensured consistency across loading scenarios. Loading conditions included a 400-N compressive load combined with a 10 N.m pure bending moment at the level of L1, replicating physiological motions of flexion-extension, lateral bending and axial rotation. We extracted data across various scenarios, focusing on the segmental range of motion at both implanted and adjacent levels.


Full Access

Introduction

A long nail is often recommended for treatment of complex trochanteric fractures but requires longer surgical and fluoroscopy times. A possible solution could be a nail with an appropriate length which can be locked in a minimally invasive manner by the main aiming device. We aimed to determine if such a nail model* offers similar structural stability on biomechanical testing on artificial bone as a standard long nail when used to treat complex trochanteric fractures.

Method

An artificial osteoporotic bone model was chosen. As osteosynthesis material two cephalomedullary nails (CMN) were chosen: a superior locking nail (SL-Nail) which can be implanted with a singular targeting device, and a long nail (long-nail) with distal locking using free-hand technique. AO31-A2.2 fractures were simulated in a standardized manner. The insertion of the nail was strictly in accordance with the IFU and surgical manual of the manufacturer. The nail was locked dynamically proximally and statically distally. Axial height of the construct, varus collapse, and rotational deformity directly after nail insertion were simulated. A Universal Testing Machine was used. Measurements were made with a stereo-optic tracking system. Reactive movements were recorded and evaluated in all six degrees of freedom. A comparative analysis provided information about the stability and deformation of the assemblies to be compared.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 21 - 21
14 Nov 2024
Nieuwstraten J Guilak F Danalache M
Full Access

Introduction. Within articular cartilage, chondrocytes reside within the pericellular matrix (PCM), collectively constituting the microanatomical entity known as a chondron. The PCM functions as a pivotal protective shield and mediator of biomechanical and biochemical cues. In the context of Osteoarthritis (OA), enzymatic degradation of the PCM is facilitated by matrix metalloproteinases (MMPs). This study delves into the functional implications of PCM structural integrity decline on the biomechanical properties of chondrons and impact on Ca. 2+. signaling dynamics. Method. Chondrons isolated from human cartilage explants were incubated with activated MMP-2, -3, or -7. Structural degradation of the pericellular matrix (PCM) was assessed by immunolabelling (collagen type VI and perlecan, n=5). Biomechanical properties of chondrons (i.e. elastic modulus (EM)) were analyzed using atomic force microscopy (AFM). A fluorescent calcium indicator (Fluo-4-AM) was used to record and quantify the intracellular Ca. 2+. influx of chondrons subjected to single cell mechanical loading (500nN) with AFM (n=7). Result. Each of the three MMPs disrupted the structural integrity of the PCM, leading to attenuated fluorescence intensity for both perlecan and collagen VI. A significant decrease of EM was observed for all MMP groups (p<0.005) with the most notable decrease observed for MMP-2 and MMP-7 (p<0.001). In alignment with the AFM results, there was a significant alteration in Ca. 2+. influx observed for all MMP groups (p<0.05), in particular for MMP-2 and MMP-7 (p<0.001). Conclusion. Proteolysis of the PCM by MMP-2, -3, and -7 not only significantly alters the biomechanical properties of articular chondrons but also affects their mechanotransduction profile and response to mechanical loading, indicating a close interconnection between these processes. These findings underscore the influence of an intact pericellular matrix (PCM) in protecting cells from high stress profiles and carry implications for the transmission of mechanical signaling during OA onset and progression


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 15 - 15
14 Nov 2024
Heumann M Feng C Benneker L Spruit M Mazel C Buschbaum J Gueorguiev B Ernst M
Full Access

Introduction

In daily clinical practice, progression of spinal fusion is typically monitored during clinical follow-up using conventional radiography and Computed Tomography scans. However, recent research has demonstrated the potential of implant load monitoring to assess posterolateral spinal fusion in an in-vivo sheep model. The question arises to whether such a strain sensing system could be used to monitor bone fusion following lumbar interbody fusion surgery, where the intervertebral space is supported by a cage. Therefore, the aim of this study was to test human cadaveric lumbar spines in two states: after a transforaminal lumbar interbody fusion (TLIF) procedure combined with a pedicle-screw-rod-construct (PSR) and subsequently after simulating bone fusion. The study hypothesized that the load on the posterior instrumentation decreases as the segment stiffens due to simulated fusion.

Method

A TLIF procedure with PSR was performed on eight human cadaveric spines at level L4-L5. Strain sensors were attached bilaterally to the rods to derive implant load changes during unconstrained flexion-extension (FE), lateral bending (LB) and axial rotation (AR) loads up to ±7.5Nm. The specimens were retested after simulating bone fusion between vertebrae L4-L5. In addition, the range of motion (ROM) was measured during each loading mode.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 29 - 29
14 Nov 2024
Dhillon M Klos K Lenz M Zderic I Gueorguiev B
Full Access

Introduction

Tibiocalcaneal arthrodesis with a retrograde intramedullary nail is an established procedure considered as a salvage in case of severe arthritis and deformity of the ankle and subtalar joints [1]. Recently, a significant development in hindfoot arthrodesis with plates has been indicated. Therefore, the aim of this study was to compare a plate specifically developed for arthrodesis of the hindfoot with an already established nail system [2]

Method

Sixteen paired human cadaveric lower legs with removed forefoot and cut at mid-tibia were assigned to two groups for tibiocalcaneal arthrodesis using either a hindfoot arthrodesis nail or an arthrodesis plate. The specimens were tested under progressively increasing cyclic loading in dorsiflexion and plantar flexion to failure, with monitoring via motion tracking. Initial stiffness was calculated together with range of motion in dorsiflexion and plantar flexion after 200, 400, 600, 800, and 1000 cycles. Cycles to failure were evaluated based on 5° dorsiflexion failure criterion


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 39 - 39
14 Nov 2024
Dhillon M Pastor T Zderic I Pastor T Gueorguiev B
Full Access

Introduction

Recently, a new dynamic high-strength round suture dynacord (DC) was introduced featuring a salt-infused silicone core attracting water in a fluid environment to preserve tissue approximation which is also available in tape form (DT). Study aims: (1) assess the influence of securing knot number on knot security of two double-stranded knot configurations (Cow-hitch and Nice-knot) tied with either dynamic (DC and DT) or conventional round sutures fiberwire (FW) and conventional suture tapes (ST), (2) compare the ultimate force and knot slippage of (a) Cow-hitch and Nice-knot and (b) DC and DT versus FW and FT at their minimal number of needed securing knots.

Method

Seven specimens of each FW, ST, DC and DT were considered for tying with Cow-hitch or Nice-knots. The base of these Cow-hitch and Nice-knots were secured with surgeons’ knots using 1-3 alternating throws. Tensile tests were conducted under physiologic conditions to evaluate knot slippage, ultimate force at rupture, and minimum number of knots ensuring 100% knot security


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 125 - 125
14 Nov 2024
Mungalpara N Kim S Baker H Lee C Shakya A Chen K Athiviraham A Koh J Elhassan B Maassen NH Amirouche F
Full Access

Introduction

Treatment strategies for irreparable Massive Rotator Cuff Tears (MRCTs) are debatable, especially for younger, active patients. Superior Capsular Reconstruction (SCR) acts as a static stabilizer, while Lower Trapezius Transfer (LTT) serves as a dynamic stabilizer. This study compares the biomechanical effectiveness of SCR and LTT, hypothesizing that their combination will enhance shoulder kinematics.

Methods

Eight human shoulders from donors aged 55-75 (mean = 63.75 years), balanced for gender, averaging 219.5 lbs, were used. Rotator cuff and deltoid tendons were connected to force sensors through a pulley system, with the deltoid linked to a servohydraulic motor for dynamic force measurement.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1100 - 1110
1 Oct 2024
Arenas-Miquelez A Barco R Cabo Cabo FJ Hachem A

Bone defects are frequently observed in anterior shoulder instability. Over the last decade, knowledge of the association of bone loss with increased failure rates of soft-tissue repair has shifted the surgical management of chronic shoulder instability. On the glenoid side, there is no controversy about the critical glenoid bone loss being 20%. However, poor outcomes have been described even with a subcritical glenoid bone defect as low as 13.5%. On the humeral side, the Hill-Sachs lesion should be evaluated concomitantly with the glenoid defect as the two sides of the same bipolar lesion which interact in the instability process, as described by the glenoid track concept. We advocate adding remplissage to every Bankart repair in patients with a Hill-Sachs lesion, regardless of the glenoid bone loss. When critical or subcritical glenoid bone loss occurs in active patients (> 15%) or bipolar off-track lesions, we should consider anterior glenoid bone reconstructions. The techniques have evolved significantly over the last two decades, moving from open procedures to arthroscopic, and from screw fixation to metal-free fixation. The new arthroscopic techniques of glenoid bone reconstruction procedures allow precise positioning of the graft, identification, and treatment of concomitant injuries with low morbidity and faster recovery. Given the problems associated with bone resorption and metal hardware protrusion, the new metal-free techniques for Latarjet or free bone block procedures seem a good solution to avoid these complications, although no long-term data are yet available.

Cite this article: Bone Joint J 2024;106-B(10):1100–1110.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 452 - 461
5 Sep 2024
Lee JY Lee HI Lee S Kim NH

Aims

The presence of facet tropism has been correlated with an elevated susceptibility to lumbar disc pathology. Our objective was to evaluate the impact of facet tropism on chronic lumbosacral discogenic pain through the analysis of clinical data and finite element modelling (FEM).

Methods

Retrospective analysis was conducted on clinical data, with a specific focus on the spinal units displaying facet tropism, utilizing FEM analysis for motion simulation. We studied 318 intervertebral levels in 156 patients who had undergone provocation discography. Significant predictors of clinical findings were identified by univariate and multivariate analyses. Loading conditions were applied in FEM simulations to mimic biomechanical effects on intervertebral discs, focusing on maximal displacement and intradiscal pressures, gauged through alterations in disc morphology and physical stress.


Aims

This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation.

Methods

In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 45 - 45
19 Aug 2024
Perez SFG Zhao G Tsukamoto I Labott JR Restrepo DJ Hooke AW Zhao C Sierra RJ
Full Access

Previous studies have highlighted differences in the risk of periprosthetic fracture between tapered slip (TS) and composite beam (CB) stems. This biomechanical study explored periprosthetic fractures around these stems and the effect of adding a 16-gauge calcar or diaphyseal wire to TS stems on their resistance to torque.

A power analysis determined a sample size of 7 specimens per group, assuming a standard deviation of 14.8 Nm in peak torque, to provide 90% power to detect a difference of at least 30 Nm between groups. Twenty-one TS stems (eight alone, six with calcar wiring, seven with diaphyseal wiring placed 2 cm distal to the lesser trochanter) and seven CB stems were cemented into standard Sawbones. A servo-hydraulic test machine applied a 1000 N load with a 1-degree rotation per second until failure. The peak torque at failure was measured, and the fracture location recorded. Comparisons were performed using two-sample t-tests.

CB stems exhibited a significantly higher peak torque at failure (205.3 Nm) than TS stems (159.5 Nm, p=0.020). Calcar-wire-TS (148.2 Nm, p=0.036) and diaphyseal-wire-TS (164.9 Nm, p=0.036) were both weaker than CB stems. Wired-TS stems showed no significant difference from non-wired-TS stems. Additionally, the study could not conclude that calcar wiring is stronger than diaphyseal wiring. All TS fractures occurred at the mid-stem, simulating a B-type fracture, while the addition of the diaphyseal wire shifted the fracture location more distally in four of seven stems (p=0.0699).

This biomechanical study supports the clinical evidence that CB stems have stronger resistance to torque than TS stems and may explain lower risk of periprosthetic fracture. The addition of calcar or diaphyseal wires to TS stems resulted in no significant changes in peak torque to fracture. In patients at high risk of periprosthetic fracture, CB cemented stems should be considered.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 76 - 76
19 Aug 2024
Cook SD Patron LP Salkeld SL Nolan LP Lavernia CJ
Full Access

Dislocation after total hip replacement (THR) is a devastating complication. Risk factors include patient and surgical factors. Mitigation of this complication has proven partially effective. This study investigated a new innovating technique to decrease this problem using rare earth magnets. Computer simulations with design and magnetic finite element analysis software were used to analyze and quantitate the forces around hip implants with embedded magnets into the components during hip range of motion. N52 Neodymium-Iron-Boron rare earth magnets were sized to fit within the existing acetabular shells and the taper of a hip system. Additionally, magnets placed within the existing screw holes were studied. A 50mm titanium acetabular shell and a 36mm ceramic liner utilizing a taper sleeve adapter were modeled which allowed for the use of a 12mm × 5mm magnet placed in the center hole, an 18mm × 15mm magnet within the femoral head, and 10mm × 5mm magnets in the screw holes. Biomechanical testing was also performed using in-vitro bone and implant models to determine retention forces through a range of hip motion. The novel system incorporating magnets generated retentive forces between the acetabular cup and femoral head of between 10 to 20 N through a range of hip motion. Retentive forces were stronger at the extreme position hip range of motion when additional magnets were placed in the acetabular screw holes. Greater retentive forces can be obtained with specially designed femoral head bores and acetabular shells specifically designed to incorporate larger magnets. Mechanical testing validated the loads obtained and demonstrated the feasibility of the magnet system to provide joint stability and prevent dislocations. Rare earth magnets provide exceptional attractive strength and can be used to impart stability and prevent dislocation in THR without the complications and limitations of conventional methods