Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application. In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.Aims
Methods
The localization of necrotic areas has been reported to impact the prognosis and treatment strategy for osteonecrosis of the femoral head (ONFH). Anteroposterior localization of the necrotic area after a femoral neck fracture (FNF) has not been properly investigated. We hypothesize that the change of the weight loading direction on the femoral head due to residual posterior tilt caused by malunited FNF may affect the location of ONFH. We investigate the relationship between the posterior tilt angle (PTA) and anteroposterior localization of osteonecrosis using lateral hip radiographs. Patients aged younger than 55 years diagnosed with ONFH after FNF were retrospectively reviewed. Overall, 65 hips (38 males and 27 females; mean age 32.6 years (SD 12.2)) met the inclusion criteria. Patients with stage 1 or 4 ONFH, as per the Association Research Circulation Osseous classification, were excluded. The ratios of anterior and posterior viable areas and necrotic areas of the femoral head to the articular surface were calculated by setting the femoral head centre as the reference point. The PTA was measured using Palm’s method. The association between the PTA and viable or necrotic areas of the femoral head was assessed using Spearman’s rank correlation analysis (median PTA 6.0° (interquartile range 3 to 11.5)).Aims
Methods
Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.Aims
Methods
Back pain is a leading cause of disability worldwide and it is primarily considered to be triggered by intervertebral disc (IVD) degeneration (IVDD). Current treatments may improve pain and mobility, but carry high costs and fail to address IVD repair or regeneration. As no effective therapeutic approach has been proposed to restore inflamed and degenerated IVDs, there is the urgent need to clarify the key pathomechanism of IVDD, the involvement of inflammation, particularly complement activation in matrix catabolism, and how to target them towards tissue repair/regeneration. Mesenchymal stem
The HIPGEN study funded under EU Horizon 2020 (Grant 7792939) has the aim to investigate the potential of the first regenerative
Osteoarthritis (OA) is the most common joint disease, affecting approximately 16% of the adult population worldwide. The chronic inflammation in the joint leads to the breakdown of cartilage, which leads to permanent pain and limitations in everyday life at an early stage of the disease. To date, there is no therapy that can interrupt the inflammatory state or reverse cartilage damage. The PROTO consortium (funded by the EU Horizon Europe program, Grant 101095635) aims to prevent the development of OA by correcting a pathological biomechanical pattern by a digital training intervention and to treat early stage OA with an innovative allogeneic
Mincing cartilage with commercially available shavers is increasingly used for treating focal cartilage defects. This study aimed to compare the impact of mincing bovine articular cartilage using different shaver blades on chondrocyte viability. Bovine articular cartilage was harvested using a scalpel or three different shaver blades (2.5 mm, 3.5 mm, or 4.2 mm) from a commercially available shaver. The cartilage obtained with a scalpel was minced into fragments smaller than 1 mm. 3. All four conditions were cultivated in a culture medium for seven days. After Day 1 and Day 7, metabolic activity, RNA isolation, and gene expression of anabolic (COL2A1, ACAN) and catabolic genes (MMP1, MMP13), Live/Dead staining and visualization using confocal microscopy, and flow cytometric characterization of minced cartilage chondrocytes were measured. The study found that mincing cartilage with shavers significantly reduced metabolic activity after one and seven days compared to scalpel mincing (p<0.001). Gene expression of anabolic genes was reduced, while catabolic genes were increased after day 7 in all shaver conditions. The MMP13/COL2A1 ratio was also increased in all shaver conditions. Confocal microscopy revealed a thin line of dead cells at the lesion site with viable cells below for the scalpel mincing and a higher number of dead cells diffusely distributed in the shaver conditions. After seven days, there was a significant decrease in viable cells in the shaver conditions compared to scalpel mincing (p<0.05). Flow cytometric characterization revealed fewer intact cells and proportionally more dead cells in all shaver conditions compared to the scalpel mincing. Mincing bovine articular cartilage with commercially available shavers reduces the viability of chondrocytes compared to scalpel mincing. This indicates that mincing cartilage with a shaver should be considered a matrix rather than a
Mesenchymal stromal cells (MSC) have been proposed as an emerging
Despite osteoarthritis (OA) representing a large burden for healthcare systems, there remains no effective intervention capable of regenerating the damaged cartilage in OA. Mesenchymal stromal cells (MSCs) are adult-derived, multipotent cells which are a candidate for musculoskeletal
Abstract. Objectives. Bone marrow aspirate concentrate (BMAC), together with fibrin glue (Tisseel, Baxter, UK) and Hyaluronic acid (HA) were used as a one-step
Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay.Aims
Methods
Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury. A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.Aims
Methods
Due to the presence of megakaryocytes, platelets and clotting factors, bone marrow aspirate (BMA) tends to coagulate. For the first time, starting from our previous studies on mesenchymal vertebral stem cells, it has been hypothesized that coagulated BMA represents a safe and effective autologous biological scaffold for bone regeneration in spinal surgery. The present research involved advanced preclinical in vitro models and the execution of a pilot clinical study. Evaluation of cell morphology, growth kinetics, immunophenotyping, clonogenicity, trilineage-differentiation, growth-factors and HOX and TALE gene expression were analyzed on clotted- and un-clotted human V-BMA. In parallel, a pilot clinical study on ten patients with degenerative spine diseases submitted to instrumented posterior arthrodesis, is ongoing to assess the ability of clotted-V-BMA to improve spinal fusion at 6- and 12-months follow-up. Results demonstrated that clotted-V-BMA have significantly higher growth-factor expression and mesenchymal stem cell (MSCs) viability, homogeneity, clonogenicity, and ability to differentiate towards the osteogenic phenotype than un-clotted-V-BMA. Clotted-V-BMA also highlighted significant reduced expression of PBX1 and of MEIS3 genes negatively involved in osteoblast maturation and differentiation. From December 2020, eight patients have already been enrolled with first promising results that will be finally evaluated in the next two months. The application of V-BMA-clot as carrier of progenitors and cytokines and as natural scaffold with a structural texture represents a point-of-care orthobiologic product to improve spinal fusion. Clinical application seems to be efficacy, and we will confirm and strengthen these data with the final results of the pilot clinical study.
Osteochondral injuries are a recognised factor in the development of osteoarthritis (OA). Mesenchymal stromal cells (MSCs) represent a promising biological therapeutic option as an OA-modifying treatment, and they also secrete factors that may have an anti-catabolic effect and/or encourage endogenous repair. We aim to study the effects of (i) intra-articular injection of human bone-marrow-derived MSCs and (ii) their secretome on recovery in a murine knee osteochondral injury model. The MSC secretome was generated by stimulating human bone-marrow-derived MSCs with tumour necrosis factor alpha (TNFα). Mice (n=48) were injected with i) MSC secretome, ii) MSCs or iii) cell culture medium (control). Pain was assessed by activity monitoring, and cartilage repair, subchondral bone volume and synovial inflammation were evaluated using histology and microCT. Both MSC- and MSC-secretome-injected mice showed significant pain reduction at day 7 when compared to control mice, but only the MSC-injected mice maintained a significant improvement over the controls at day 28. Cartilage repair was significantly improved in MSC-injected mice. No significant effects were observed with regards to synovial inflammation or subchondral bone volume. The MSC secretome demonstrates regenerative effects but this does not appear to be as sustained as a MSC
Autologous tendon cell injection (ATI) is a promising non-surgical treatment for tendinopathies and tendon tear that address its underlying pathology. The procedure involves harvesting autologous tendon tissue, the isolation of the tendon cells, expansion under quality assured GMP cell laboratory and the injection of the tendon cells via U/S into the degenerative tendon tissue. In clinical practice, the patella (PT) and palmaris longus (PL) tendons are common sites used for tendon tissue biopsy. The objective of this study is to compare the tendon cell quality, identity, purity, doubling time and yield of cells between PT and PL tendons for ATI. Tendon tissue biopsies were harvested from PT via U/S using a 14-gauge needle or resected surgically from the PL tendon. The biopsies were transported to a GMP cell laboratory, where tendon cells were isolated, cultured and expanded for 4 to 6 weeks, and analysed for viability, cell doubling time, cellular characteristics including cell purity, potency and identity (PPI). Tendon samples from 149 patients were analysed (63 PT). Average biopsy weight was 62mg for PT and 119mg for PI (p<0.001). Average cell doubling time (83.9 vs 82.7 hours), cellular yield (16.2 vs 15.2x106), viability (98.7 vs 99.0%) and passage number (3 vs 3) were not significantly different between tendons. Additionally, ddPCR analyses showed no differences of PPI including tendon cell markers of collagen type I, scleraxis and tenomodulin. No post-biopsy complications or contamination were reported for either group. Assessing tendon tissue from palmaris tendon is relatively easier. Tendon tissue biopsy tissue for autologous tendon
Cite this article:
Aims. Successful
Intervertebral disc degeneration (IDD) affects more than 80% of the population all over the world. Current strategies for the treatment of IDD are based on conservative or surgical procedures with the aim of relieving pain. Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy in recent decades, but studies showed that the particularly hostile microenvironment in the intervertebral disc (IVD) can compromise cells survival rate. The use of exosomes, extracellular vesicles released by various cell types, possess considerable economic advantages including low immunogenicity and toxicity. Exosomes allow intercellular communication by conveying functional proteins, RNA, miRNA and lipids between cells. The purpose of this study is to assess the therapeutic effects of exosomes derived from Wharton Jelly mesenchymal stromal cells (WJ-MSC) on human nucleuspulposus cells (hNPC) in an in vitro 3D culture model. Exosomes (exos) were isolated by tangential flow filtration of WJ-MSC conditioned media and characterized by: quantification with BCA test; morphological observation with TEM, surface marker expression by WB and size evaluation by NTA. Confocal microscopy has been used to identify exosomes marked with PKH26 and monitor fusion and/or incorporation in hNPC. hNPC were isolated from waste surgical material from patients undergoing discectomy (n = 5), expanded, encapsulated in alginate beads and treated with: culture medium (control group); WJ-MSC exos (WJ-exos) at different concentrations (10 μg/ml, 50 μg/ml and 100 μg/ml). They were then analysed for: cell proliferation (Trypan Blu); viability (Live/Dead Assay); quantification of nitrites (Griess) and glycosaminoglycans, GAG (DMBB). The hNPC in alginate beads treated for 7 days were included in paraffin and histologically analysed to determine the presence of extracellular matrix (ECM) components. Finally, the expression levels of catabolic and anabolic genes were evaluated through real-time polymerase chain reaction (qPCR). All concentrations of WJ-exos under exam were capable to induce a significant increase in cell proliferation after 10 and 14 days of treatment (p < 0.01 and p < 0.001, respectively). Live/Dead assay showed a decrease in cell death at 50 μg/ml of WJ-exos (p < 0.05). While cellular oxidative stress indicator, nitrite production, was reduced in a dose-dependent way and statistically significant only with 100 μg/ml of WJ-exos (p < 0.05). WJ-exos at 10 and 100 μg/ml induced a significant increase in GAG content (p < 0.05; p < 0.01, respectively) confirmed by Alcian Blu staining. Exos derived from WJ-MSC modulated gene expression levels by increasing expression of ACAN and SOX-9 genes and reducing significantly of IL-6, MMP-1, MMP-13 and ADAMTS-5 levels (p < 0.05; p < 0.01) compared to the control group. Our results supported the potential use of exosomes from WJ-MSC for the treatment of IDD. Exosomes improved hNPC growth, attenuated ECM degradation and reduced oxidative stress and inflammation. This study offers a new scenario in IVD regeneration, promoting the potential use of extracellular vesicles as an alternative strategy to
Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism. Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67phox was involved in suramin-enhanced chondrocyte phenotype maintenance.Aims
Methods
Aims. The aim of the HIPGEN consortium is to develop the first