A recent study used the RAND Corporation at University of California, Los Angeles (RAND/UCLA) method to develop anatomical total shoulder arthroplasty (aTSA) appropriateness criteria. The purpose of our study was to determine how patient-reported outcome measures (PROMs) vary based on appropriateness. Clinical data from a multicentre database identified patients who underwent primary aTSA from November 2004 to January 2023. A total of 390 patients (mean follow-up 48.1 months (SD 42.0)) were included: 97 (24.9%) were classified as appropriate, 218 (55.9%) inconclusive, and 75 (19.2%) inappropriate. Patients were classified as “appropriate”, “inconclusive”, or “inappropriate”, using a modified version of an appropriateness algorithm, which accounted for age, rotator cuff status, mobility, symptomatology, and Walch classification. Multiple pre- and postoperative scores were analyzed using Pearson’s chi-squared test and one-way analysis of variance (ANOVA). Postoperative complications were also analyzed.Aims
Methods
Injuries to the quadriceps muscle group are common in athletes performing high-speed running and kicking sports. The complex anatomy of the rectus femoris puts it at greatest risk of injury. There is variability in prognosis in the literature, with reinjury rates as high as 67% in the severe graded proximal tear. Studies have highlighted that athletes can reinjure after nonoperative management, and some benefit may be derived from surgical repair to restore function and return to sport (RTS). This injury is potentially career-threatening in the elite-level athlete, and we aim to highlight the key recent literature on interventions to restore strength and function to allow early RTS while reducing the risk of injury recurrence. This article reviews the optimal diagnostic strategies and classification of quadriceps injuries. We highlight the unique anatomy of each injury on MRI and the outcomes of both nonoperative and operative treatment, providing an evidence-based management framework for athletes. Cite this article:
The February 2023 Research Roundup360 looks at: Clinical and epidemiological features of scaphoid fracture nonunion; Routine sterile glove and instrument change at the time of abdominal wound closure to prevent surgical site infection (ChEETAh); Characterization of genetic risk of end-stage knee osteoarthritis treated with total knee arthroplasty; Platelet-rich plasma or autologous blood injection for plantar fasciitis; Volume and outcomes of joint arthroplasty; The hazards of absolute belief in the p-value laid bare.
The tibial component of total knee arthroplasty can either be an all-polyethylene (AP) implant or a metal-backed (MB) implant. This study aims to compare the five-year functional outcomes of AP tibial components to MB components in patients aged over 70 years. Secondary aims are to compare quality of life, implant survivorship, and cost-effectiveness. A group of 130 patients who had received an AP tibial component were matched for demographic factors of age, BMI, American Society of Anesthesiologists (ASA) grade, sex, and preoperative Knee Society Score (KSS) to create a comparison group of 130 patients who received a MB tibial component. Functional outcome was assessed prospectively by KSS, quality of life by 12-Item Short-Form Health Survey questionnaire (SF-12), and range of motion (ROM), and implant survivorships were compared. The SF six-dimension (6D) was used to calculate the incremental cost effectiveness ratio (ICER) for AP compared to MB tibial components using quality-adjusted life year methodology.Aims
Methods
The December 2022 Shoulder & Elbow Roundup360 looks at: Biceps tenotomy versus soft-tissue tenodesis in females aged 60 years and older with rotator cuff tears; Resistance training combined with corticosteroid injections or tendon needling in patients with lateral elbow tendinopathy; Two-year functional outcomes of completely displaced midshaft clavicle fractures in adolescents; Patients who undergo rotator cuff repair can safely return to driving at two weeks postoperatively; Are two plates better than one? A systematic review of dual plating for acute midshaft clavicle fractures; Treatment of acute distal biceps tendon ruptures; Rotator cuff tendinopathy: disability associated with depression rather than pathology severity; Coonrad-Morrey total elbow arthroplasty implications in young patients with post-traumatic sequelae.
In this study, we aimed to explore surgical variations in the Femoral Neck System (FNS) used for stable fixation of Pauwels type III femoral neck fractures. Finite element models were established with surgical variations in the distance between the implant tip and subchondral bone, the gap between the plate and lateral femoral cortex, and inferior implant positioning. The models were subjected to physiological load.Aims
Methods
Higher osteoblastic bone activity is expected in aseptic loosening and painful unicompartmental knee arthroplasty (UKA). However, insights into normal bone activity patterns after medial UKAs are lacking. The aim of this study was to identify the evolution in bone activity pattern in well-functioning medial mobile-bearing UKAs. In total, 34 patients (13 female, 21 male; mean age 62 years (41 to 79); BMI 29.7 kg/m2 (23.6 to 42.1)) with 38 medial Oxford partial UKAs (20 left, 18 right; 19 cementless, 14 cemented, and five hybrid) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively, and at one and two years postoperatively. Changes in mean osteoblastic activity were investigated using a tracer localization scheme with volumes of interest (VOIs), reported by normalized mean tracer values. A SPECT/CT registration platform additionally explored cortical tracer evolution in zones of interest identified by previous experimental research.Aims
Methods
Patients with a deformity of the hindfoot present a particular challenge when performing total knee arthroplasty (TKA). The literature contains little information about the relationship between TKA and hindfoot alignment. This systematic review aimed to determine from both clinical and radiological studies whether TKA would alter a preoperative hindfoot deformity and whether the outcome of TKA is affected by the presence of a postoperative hindfoot deformity. A systematic literature search was performed in the databases PubMed, EMBASE, Cochrane Library, and Web of Science. Search terms consisted of “total knee arthroplasty/replacement” combined with “hindfoot/ankle alignment”. Inclusion criteria were all English language studies analyzing the association between TKA and the alignment of the hindfoot, including the clinical or radiological outcomes. Exclusion criteria consisted of TKA performed with a concomitant extra-articular osteotomy and case reports or expert opinions. An assessment of quality was conducted using the modified Methodological Index for Non-Randomized Studies (MINORS). The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and registered in the PROSPERO database (CRD42019106980).Aims
Methods
During revision total knee arthroplasty (rTKA), proximal tibial bone loss is frequently encountered and can result in a less-stable bone-implant fixation. A 3D printed titanium alloy (Ti6Al4V) revision augment that conforms to the irregular shape of the proximal tibia was recently developed. The purpose of this study was to evaluate the fixation stability of rTKA with this augment in comparison to conventional cemented rTKA. Eleven pairs of thawed fresh-frozen cadaveric tibias (22 tibias) were potted in custom fixtures. Primary total knee arthroplasty (pTKA) surgery was performed on all tibias. Fixation stability testing was conducted using a three-stage
Patient-specific instrumentation has been shown to increase a surgeon’s precision and accuracy in placing the glenoid component in shoulder arthroplasty. There is, however, little available information about the use of patient-specific planning (PSP) tools for this operation. It is not known how these tools alter the decision-making patterns of shoulder surgeons. The aim of this study was to investigate whether PSP, when compared with the use of plain radiographs or select static CT images, influences the understanding of glenoid pathology and surgical planning. A case-based survey presented surgeons with a patient’s history, physical examination, and, sequentially, radiographs, select static CT images, and PSP with a 3D imaging program. For each imaging modality, the surgeons were asked to identify the Walch classification of the glenoid and to propose the surgical treatment. The participating surgeons were grouped according to the annual volume of shoulder arthroplasties that they undertook, and responses were compared with the recommendations of two experts.Aims
Methods
Accurate measurement of the glenoid version is important in performing total shoulder arthroplasty (TSA). Our aim was to evaluate the Ellipse method, which involves formally defining the vertical mid-point of the glenoid prior to measuring the glenoid version and comparing it with the ‘classic’ Friedman method. This was a retrospective study which evaluated 100 CT scans for patients who underwent a primary TSA. The glenoid version was measured using the Friedman and Ellipse methods by two senior observers. Statistical analyses were performed using the paired Aims
Methods
Background. Distal femoral replacements (DFR) are used in children for limb-salvage procedures after bone tumor surgery. These are typically modular devices involving a hinged knee axle that has peripheral metal-on-polyethylene (MoP) and central metal-on-metal (M-M) articulations. While modular connections and M-M surfaces in hip devices have been extensively studied, little is known about long-term wear or corrosion mechanisms of DFRs. Retrieved axles were examined to identify common features and patterns of surface damage, wear and corrosion. Methods. The cobalt chromium alloy axle components from 13 retrieved DFRs were cleaned and examined by eye and with a stereo microscope up to 1000× magnification. Each axle was marked into 6 zones for visual inspection: the proximal and distal views, and the middle (M-M) and 2 peripheral (MoP) zones. The approximate percentage of the following features were recorded per zone: polishing, abrasion or scratching, gouges or detectable wear, impingement wear (i.e. from non- intentional articulation), discoloration and pitting. Results. In each case, the middle M-M zones showed more damage features compared with peripheral MoP zones. Brown discoloration, presumably due to tribofilm deposits, was the predominant M-M area feature, particularly at the junction between the MoP and M-M zones. Higher magnification showed areas of polishing underlying the discoloration, suggesting repetitive removal of the surface metal and re-deposition of tribofilms (Fig 2B). 9 cases demonstrated reflective patches resembling “thumbprint” or “fish scale” markings, which, under higher magnification, showed signs of scratching and grooving in a radial pattern (Figs 2D, 3A). Pits were occasionally present but appeared to be from third-body damage as signs of corrosion were absent. Features that resembled carbides, sometimes with associated “comet” patterns of scratching were apparent under higher magnification in some areas. The MoP zones showed variable scratching, abrasion and wear polishing. The MoP to M-M junctional areas were demarcated by a distinct band corresponding, in some cases, to a narrow wear groove or gouge. 3 axles showed evidence of severe impingement wear on one proximal end. Discussion. This study of retrieved axle components demonstrated varying types of surface wear damage but no clear evidence of corrosion. This is presumably because these parts are in nearly constant motion during gait. Third-body damage may have resulted from the breakdown of surface carbides, leading to scratching, abrasion and wear polishing under high contact stress. Severe impingement wear presumably occurred after catastrophic damage to the polyethylene bushings, allowing
The primary objective of this study was to compare accuracy in restoring the native centre of hip rotation in patients undergoing conventional manual total hip arthroplasty (THA) This prospective cohort study included 50 patients undergoing conventional manual THA and 25 patients receiving robotic-arm assisted THA. Patients undergoing conventional manual THA and robotic-arm assisted THA were well matched for age (mean age, 69.4 years (Objectives
Materials and Methods
Introduction. The effectiveness of patient specific instrumentation (PSI) to perform total knee arthroplasty (TKA) remains controversial. Multiple studies have been published that reveal conflicting results on the effectiveness of PSI, but no study has analyzed the contact kinematics within knee joints replaced with the use of PSI. Since a departure from normal kinematics can lead to
Introduction. Clinical observations suggest mid-flexion instability may occur more commonly with rotating platform (RP) total knee arthroplasty (TKA), including increased revision rates and patient-reported instability and pain. We propose that increased gap laxity leads to liftoff of the lateral femoral condyle with decreased conformity between the femoral component and polyethylene (PE) insert surface leading to PE subluxation or dislocation. The objectives of this study were to define “at risk” loading conditions that predispose patients to PE insert subluxation or spinout, and to quantify the margin of error for flexion/extension gap laxity in preventing these adverse events under physiologic loading conditions. Methods. Biomechanical testing was performed on six fresh frozen cadaveric knees implanted with a posterior stabilized RP TKA using a gap balancing technique. Rotational displacement and torque were measured over time, while stiffness, yield torque, max torque and displacement were calculated using a post-processing, custom MatLab code. Revision with varying size femoral components (size 3–6) and PE insert thicknesses (10–15mm), by downsizing one step, were used to create a spectrum of flexion/extension gap mismatch. Each configuration was subjected to three loaded testing conditions (0°, 30° and 60° flexion) in balanced and
The Walch Type C dysplastic glenoid is characterized by excessive
retroversion. This anatomical study describes its morphology. A total of 29 shoulders with a dysplastic glenoid were analyzed.
CT was used to measure retroversion, inclination, height, width,
radius-of-curvature, surface area, depth, subluxation of the humeral
head and the Goutallier classification of fatty infiltration. The
severity of dysplasia and deficiency of the posterior rim of the
glenoid were recorded.Aims
Patients and Methods
Background. While total shoulder arthroplasty (TSA) is a generally successful procedure, glenoid loosening remains a common complication. Though the occurrence of loosening was related to patient-specific factors, biomechanical factors related to implant features may also affect the fixation of the glenoid component, in particular increased glenohumeral mismatch that could result in
Introduction. Varying degrees of posterior glenoid bone loss occurs in patients with end stage osteoarthritis and can result in increased glenoid retroversion. The excessive retroversion can affect implant stability,