The transepicondylar axis is a well-established reference for the determination of femoral component rotation in total knee arthroplasty (TKA). However, when severe bone loss is present in the femoral condyles, rotational alignment can be more complicated. There is a lack of validated landmarks in the supracondylar region of the distal femur. Therefore, the aim of this study was to analyze the correlation between the surgical transepicondylar axis (sTEA) and the suggested dorsal cortex line (DCL) in the coronal plane and the inter- and intraobserver reliability of its CT scan measurement. A total of 75 randomly selected CT scans were measured by three experienced surgeons independently. The DCL was defined in the coronal plane as a tangent to the dorsal femoral cortex located 75 mm above the joint line in the frontal plane. The difference between sTEA and DCL was calculated. Descriptive statistics and angulation correlations were generated for the sTEA and DCL, as well as for the distribution of measurement error for intra- and inter-rater reliability.Aims
Methods
Reconstruction after osteoarticular resection of the proximal ulna for tumours is technically difficult and little has been written about the options that are available. We report a series of four patients who underwent radial neck to humeral trochlea transposition arthroplasty following proximal ulnar osteoarticular resection. Between July 2020 and July 2022, four patients with primary bone tumours of the ulna underwent radial neck to humeral trochlea transposition arthroplasty. Their mean age was 28 years (12 to 41). The functional outcome was assessed using the range of motion (ROM) of the elbow, rotation of the forearm and stability of the elbow, the Musculoskeletal Tumor Society score (MSTS), and the nine-item abbreviated version of the Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH-9) score.Aims
Methods
This study aims to describe a new method that may be used as a supplement to evaluate humeral rotational alignment during intramedullary nail (IMN) insertion using the profile of the perpendicular peak of the greater tuberosity and its relation to the transepicondylar axis. We called this angle the greater tuberosity version angle (GTVA). This study analyzed 506 cadaveric humeri of adult patients. All humeri were CT scanned using 0.625 × 0.625 × 0.625 mm cubic voxels. The images acquired were used to generate 3D surface models of the humerus. Next, 3D landmarks were automatically calculated on each 3D bone using custom-written C++ software. The anatomical landmarks analyzed were the transepicondylar axis, the humerus anatomical axis, and the peak of the perpendicular axis of the greater tuberosity. Lastly, the angle between the transepicondylar axis and the greater tuberosity axis was calculated and defined as the GTVA.Aims
Methods
This study aimed to quantify the shoulder kinematics during an apprehension-relocation test in patients with anterior shoulder instability (ASI) and glenoid bone loss using the radiostereometric analysis (RSA) method. Kinematics were compared with the patient’s contralateral healthy shoulder. A total of 20 patients with ASI and > 10% glenoid bone loss and a healthy contralateral shoulder were included. RSA imaging of the patient’s shoulders was performed during a repeated apprehension-relocation test. Bone volume models were generated from CT scans, marked with anatomical coordinate systems, and aligned with the digitally reconstructed bone projections on the RSA images. The glenohumeral joint (GHJ) kinematics were evaluated in the anteroposterior and superoinferior direction of: the humeral head centre location relative to the glenoid centre; and the humeral head contact point location on the glenoid.Aims
Methods
The June 2024 Children’s orthopaedics Roundup. 360. looks at: Proximal femoral unicameral bone cysts: is ESIN the answer?; Hybrid-mesh casts in the conservative management of paediatric supracondylar humeral fractures: a randomized controlled trial; Rate and risk factors for contralateral slippage in adolescents treated for slipped capital femoral epiphysis; CRP predicts the need to escalate care after initial debridement for musculoskeletal infection; Genu valgum in paediatric patients presenting with patellofemoral instability; Nusinersen therapy changed the natural course of spinal muscular atrophy type 1: what about spine and hip?; The necessity of ulnar nerve exploration and translocation in open reduction of medial humeral
Aims. Medial humeral
Aims. The management of fractures of the medial
This study compared patient-reported outcomes of three total knee arthroplasty (TKA) designs from one manufacturer: one cruciate-retaining (CR) design, and two cruciate-sacrificing designs, anterior-stabilized (AS) and posterior-stabilized (PS). Patients scheduled for primary TKA were included in a single-centre, prospective, three-armed, blinded randomized trial (n = 216; 72 per group). After intraoperative confirmation of posterior cruciate ligament (PCL) integrity, patients were randomly allocated to receive a CR, AS, or PS design from the same TKA system. Insertion of an AS or PS design required PCL resection. The primary outcome was the mean score of all five subscales of the Knee injury and Osteoarthritis Outcome Score (KOOS) at two-year follow-up. Secondary outcomes included all KOOS subscales, Oxford Knee Score, EuroQol five-dimension health questionnaire, EuroQol visual analogue scale, range of motion (ROM), and willingness to undergo the operation again. Patient satisfaction was also assessed.Aims
Methods
Abstract. Objectives. Neonatal motor development transitions from initially spontaneous to later increasingly complex voluntary movements. A delay in transitioning may indicate cerebral palsy (CP). The general movement optimality score (GMOS) evaluates infant movement variety and is used to diagnose CP, but depends on specialized physiotherapists, is time-consuming, and is subject to inter-observer differences. We hypothesised that an objective means of quantifying movements in young infants using motion tracking data may provide a more consistent early diagnosis of CP and reduce the burden on healthcare systems. This study assessed lower limb kinematic and muscle force variances during neonatal infant kicking movements, and determined that movement variances were associated with GMOS scores, and therefore CP. Methods. Electromagnetic motion tracking data (Polhemus) was collected from neonatal infants performing kicking movements (min 50° knee extension-flexion, <2 seconds) in the supine position over 7 minutes. Tracking data from lower limb anatomical landmarks (midfoot inferior, lateral malleolus, lateral knee
The posterior compartments of the knee are currently accessed arthroscopically through anterior, posteromedial or posterolateral portals. A direct posterior portal to access the posterior compartments has been overlooked due to a perceived high-risk of injury to the popliteal neurovascular structures. Therefore, this study aimed to investigate the safety and accessibility of a direct posterior portal into the knee. This cross-sectional study comprised a sample of 95 formalin-embalmed cadaveric knees and 9 fresh-frozen knees. Cannulas were inserted into the knees, 16mm from the vertical plane between the medial
Focal knee arthroplasty is an attractive alternative to knee arthroplasty for young patients because it allows preservation of a large amount of bone for potential revisions. However, the mechanical behaviour of cartilage has not yet been investigated because it is challenging to evaluate in vivo contact areas, pressure, and deformations from metal implants. Therefore, this study aimed to determine the contact pressure in the tibiofemoral joint with a focal knee arthroplasty using a finite element model. The mechanical behaviour of the cartilage surrounding a metal implant was evaluated using finite element analysis. We modelled focal knee arthroplasty with placement flush, 0.5 mm deep, or protruding 0.5 mm with regard to the level of the surrounding cartilage. We compared contact stress and pressure for bone, implant, and cartilage under static loading conditions.Aims
Methods
Abstract. Introduction. Previous research has shown that, notwithstanding ligament healing, properly selected MCL reconstruction can restore normal knee stability after MCL rupture. The hypothesis of this work was that it is possible to restore knee stability (particularly valgus and AMRI) with simplified and/or less-invasive MCL reconstruction methods. Methods. Nine unpaired human knees were cleaned of skin and fat, then digitization screws and optical trackers were attached to the femur and tibia. A Polaris stereo camera measured knee kinematics across 0. o. -100. o. flexion when the knee was unloaded then with 90N anterior-posterior force, 9Nm varus-valgus moment, 5Nm internal-external rotation, and external+anterior (AMRI) loading. The test was conducted for the following knee conditions: intact, injured: transected superficial and deep MCL (sMCL and dMCL), and five reconstructions: (long sMCL, long sMCL+dMCL, dMCL, short sMCL+dMCL, short sMCL), all based on the medial
Musculoskeletal diseases are having a growing impact worldwide. It is therefore crucial to have an evidence base to most effectively and efficiently implement future health services across different healthcare systems. International trials are an opportunity to address these challenges and have many potential benefits. They are, however, complex to set up and deliver, which may impact on the efficient and timely delivery of a project. There are a number of models of how international trials are currently being delivered across a range of orthopaedic patient populations, which are discussed here. The examples given highlight that the key to overcoming these challenges is the development of trusted and equal partnerships with collaborators in each country. International trials have the potential to address a global burden of disease, and in turn optimize the benefit to patients in the collaborating countries and those with similar health services and care systems. Cite this article:
The objective of this study was to analyze the biomechanical effect of an implanted ACL graft by determining the tunnel position according to the aspect ratio (ASR) of the distal femur during flexion-extension motion. To analyze biomechanical characteristics according to the ASR of the knee joint, only male samples were selected to exclude the effects of gender and 89 samples were selected for measurement. The mean age was 50.73 years, and the mean height was 165.22 cm. We analyzed tunnel length, graft bending angle, and stress of the graft according to tunnel entry position and aspect ratio (ratio of antero-posterior depth to medio-lateral width) of the articular surface for the distal femur during single-bundle outside-in anterior cruciate ligament reconstruction surgery. We performed multi-flexible-body dynamic analyses with wherein four ASR (98, 105, 111, and 117%) knee models. The various ASRs were associated with approximately 1-mm changes in tunnel length. The graft bending angle increased when the entry point was far from the lateral
A primary goal of revision Total Knee Arthroplasty (rTKA) is restoration of the Joint Line (JL) and Posterior Condylar Offsets (PCO). The presence of a native contralateral joint allows JL and PCO to be inferred in a way that could account for patient-specific anatomical variations more accurately than current techniques. This study assesses bilateral distal femoral symmetry in the context of defining targets for restoration of JL and PCO in rTKA. 566 pre-operative CTs for bilateral TKAs were segmented and landmarked by two engineers. Landmarks were taken on both femurs at the medial and lateral
Abstract. Introduction. MCL injuries often occur concurrently with ACL rupture – most noncontact ACL injuries occur in valgus and external rotation (ER) - and conservative MCL treatment leads to increased rate of ACL reconstruction failure. There has been little work developing effective MCL reconstructions. Methods. Cadaveric work measured MCL attachments by digitisation and radiographically, relating them to anatomical landmarks. The isometry of the superficial and deep MCL (sMCL and dMCL) and posterior oblique ligament (POL) was measured using fine sutures led to displacement transducers. Contributions to stability (restraint) were measured in a robotic testing system. Two MCL reconstructions were designed and tested: 3-strand reconstruction (sMCL+dMCL+POL), and 2-strand method (sMCL+dMCL) addressing anteromedial rotatory instability (AMRI). The resulting stability was measured in a kinematics test rig, and compared to the ‘anatomic’ sMCL+POL reconstruction of LaPrade. Results. The sMCL was isometric, centred on the medial