Advertisement for orthosearch.org.uk
Results 1 - 20 of 33
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_12 | Pages 18 - 18
10 Jun 2024
Haston S Langton D Townshend D Bhalekar R Joyce T
Full Access

Despite advancements, revision rates following total ankle replacement (TAR) are high in comparison to other total joint replacements. This explant analysis study aimed to investigate whether there was appreciable metal particulate debris release from various contemporary TARs by describing patterns of material loss. Twenty-eight explanted TARs (9 designs: 3 fixed and 6 mobile bearing), revised for any reason, were studied. The articulating surfaces of the metal tibial and talar components as well as the polyethylene insert were assessed for damage features using light microscopy. Based on the results of the microscopic analysis, scanning electron microscopy with energy dispersive X-ray spectroscopy was performed to determine the composition of embedded debris identified, as well as non-contacting 3D profilometry. Pitting, indicative of material loss, was identified on the articulating surfaces of 54% of tibial components and 96% of talar components. Bearing constraint was not found to be a factor, with similar proportions of fixed and mobile bearing metal components showing pitting. More cobalt-chromium than titanium alloy tibial components exhibited pitting (63% versus 20%). Significantly higher average surface roughness (Sa) values were measured for pitted areas in comparison to unpitted areas of these metal components (p<0.05). Additionally, metallic embedded debris (cobalt-chromium likely due to pitting of the tibial and talar components or titanium likely from loss of their porous coatings) was identified in 18% of polyethylene inserts. The presence of hard 3. rd. body particles was also indicated by macroscopically visible sliding plane scratching, identified on 79% of talar components. This explant analysis study demonstrates that metal debris is released from the articulating surfaces and the coatings of various contemporary TARs, both fixed and mobile bearing. These findings suggest that metal debris release in TARs may be an under-recognised issue that should be considered in the study of painful or failed TAR moving forwards


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1791 - 1801
1 Dec 2021
Bhalekar RM Nargol ME Shyam N Nargol AVF Wells SR Collier R Pabbruwe M Joyce TJ Langton DJ

Aims

The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs).

Methods

At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 47 - 47
1 Apr 2019
Joyce TJ Smith SL Forbes L Rushton PRP Bowey AJ Gibson MJ
Full Access

Background. Established hip and knee arthroplasty registers exist in many countries but this is not the case with spinal implants. Moreover, in the case of a rod intended to guide spinal growth in a child and then be removed, the definition of ‘failure’ (revision) used for hip or knee arthroplasty is inappropriate. How can the performance of such spinal implants be judged?. Methods. Ninety-six MAGnetic Expansion Control (MAGEC) spinal rods were obtained from multiple centres after removal from the spines of 52 children with scoliosis. Clinical details were assessed and divided between unplanned revision operations (‘failures’) and those which were planned. Of the explanted rods, 49 were tested for the amount of force they could output, using the manufacturer's supplied test jig. Sixty-five rods were cut apart so that the internal components (bearings, O-ring seals, drive pins) could be assessed, alongside if there was evidence of internal wear. Results. Seventy-four per cent of revision operations were unplanned. Eighty per cent of explanted rods were unable to produce the force expected from a new rod. All rods (100%) that were successfully cut open showed signs of internal wear. Non- functional bearings were seen in 74% of cases, obvious seal damage in 57% of cases and broken drive pins in 47% of cases. Conclusion. Despite potential clinical benefits, explanted MAGEC rods showed consistent and substantial damage. The majority of rods showed zero force output and most revision operations were unplanned. Independent explant analysis allows appraisal of new technology in arthroplasty for patient benefit


Bone & Joint Research
Vol. 8, Issue 3 | Pages 146 - 155
1 Mar 2019
Langton DJ Natu S Harrington CF Bowsher JG Nargol AVF

Objectives

We investigated the reliability of the cobalt-chromium (CoCr) synovial joint fluid ratio (JFR) in identifying the presence of a severe aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) response and/or suboptimal taper performance (SOTP) following metal-on-metal (MoM) hip arthroplasty. We then examined the possibility that the CoCr JFR may influence the serum partitioning of Co and Cr.

Methods

For part A, we included all revision surgeries carried out at our unit with the relevant data, including volumetric wear analysis, joint fluid (JF) Co and Cr concentrations, and ALVAL grade (n = 315). Receiver operating characteristic curves were constructed to assess the reliability of the CoCr JFR in identifying severe ALVAL and/or SOTP. For part B, we included only patients with unilateral prostheses who had given matched serum and whole blood samples for Co and Cr analysis (n = 155). Multiple regression was used to examine the influence of JF concentrations on the serum partitioning of Co and Cr in the blood.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1310 - 1319
1 Oct 2018
Langton DJ Wells SR Joyce TJ Bowsher JG Deehan D Green S Nargol AVF Holland JP

Aims

There are limited published data detailing the volumetric material loss from tapers of conventional metal-on-polyethylene (MoP) total hip arthroplasties (THAs). Our aim was to address this by comparing the taper wear rates measured in an explanted cohort of the widely used Exeter THA with those measured in a group of metal-on-metal (MoM) THAs.

Patients and Methods

We examined an existing retrieval database to identify all Exeter V40 and Universal MoP THAs. Volumetric wear analysis of the taper surfaces was conducted using previously validated methodology. These values were compared with those obtained from a series of MoM THAs using non-parametric statistical methodology. A number of patient and device variables were accounted for using multiple regression modelling.


Bone & Joint Research
Vol. 7, Issue 6 | Pages 388 - 396
1 Jun 2018
Langton DJ Sidaginamale RP Joyce TJ Bowsher JG Holland JP Deehan D Nargol AVF Natu S

Objectives

We have encountered patients who developed large joint fluid collections with massive elevations in chromium (Cr) and cobalt (Co) concentrations following metal-on-metal (MoM) hip arthroplasties. In some cases, retrieval analysis determined that these ion concentrations could not be explained simply by the wear rates of the components. We hypothesized that these effects may be associated with aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL).

Patients and Methods

We examined the influence of the ALVAL grade on synovial fluid Co and Cr concentrations following adjustment for patient and device variables, including volumetric wear rates. Initially restricting the analysis to include only patients with one MoM hip resurfacing device, we performed multiple regression analyses of prospectively collected data. We then repeated the same statistical approach using results from a larger cohort with different MoM designs, including total hip arthroplasties.


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1304 - 1312
1 Oct 2017
Langton DJ Sidaginamale RP Joyce TJ Meek RD Bowsher JG Deehan D Nargol AVF Holland JP

Aims. We sought to determine whether cobalt-chromium alloy (CoCr) femoral stem tapers (trunnions) wear more than titanium (Ti) alloy stem tapers (trunnions) when used in a large diameter (LD) metal-on-metal (MoM) hip arthroplasty system. Patients and Methods. We performed explant analysis using validated methodology to determine the volumetric material loss at the taper surfaces of explanted LD CoCr MoM hip arthroplasties used with either a Ti alloy (n = 28) or CoCr femoral stem (n = 21). Only 12/14 taper constructs with a rough male taper surface and a nominal included angle close to 5.666° were included. Multiple regression modelling was undertaken using taper angle, taper roughness, bearing diameter (horizontal lever arm) as independent variables. Material loss was mapped using a coordinate measuring machine, profilometry and scanning electron microscopy. Results. After adjustment for other factors, CoCr stem tapers were found to have significantly greater volumetric material loss than the equivalent Ti stem tapers. Conclusion. When taper junction damage is identified during revision of a LD MoM hip, it should be suspected that a male taper composed of a standard CoCr alloy has sustained significant changes to the taper cone geometry which are likely to be more extensive than those affecting a Ti alloy stem. Cite this article: Bone Joint J 2017;99-B:1304–12


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 592 - 600
1 May 2017
Matharu GS Nandra RS Berryman F Judge A Pynsent PB Dunlop DJ

Aims

To determine ten-year failure rates following 36 mm metal-on-metal (MoM) Pinnacle total hip arthroplasty (THA), and identify predictors of failure.

Patients and Methods

We retrospectively assessed a single-centre cohort of 569 primary 36 mm MoM Pinnacle THAs (all Corail stems) followed up since 2012 according to Medicines and Healthcare Products Regulation Agency recommendations. All-cause failure rates (all-cause revision, and non-revised cross-sectional imaging failures) were calculated, with predictors for failure identified using multivariable Cox regression.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 18 - 18
1 Mar 2017
Stratton-Powell A Tipper J Williams S Redmond A Brockett C
Full Access

Introduction. Total ankle replacement (TAR) is less successful than other joint replacements with a 77% survivorship at 10 years. Predominant indications for revision include: Insert dislocation, soft tissue impingement and pain/stiffness. Insert edge-loading may be both a product and cause of these indications and was reported to affect 22% of patients with the, now withdrawn from market, Ankle Evolutive System (AES) TAR (Transysteme, Nimes, France). Compressive forces up to seven times body weight over a relatively small contact area (∼6.0 to 9.2 cm. 2. ), in combination with multi-directional motion potentially causes significant polyethylene wear and deformation in mobile-bearing TAR designs. Direct methods of measuring component volume (e.g. pycnometer) use Archimedes' principle but cannot identify spatial changes in volume or form indicative of wear/deformation. Quantitative methods for surface analysis bridge this limitation and may advance methods for analysing the edge loading phenomena in TAR. Aim. Determine the frequency of edge loading in a cohort of explanted total ankle replacements and compare the quantitative surface characteristics using a novel explant analysis method. Methods. Thirty-two AES TAR devices were implanted and retrieved by the same surgeon (UK Health Research Authority approval: 09/H1307/60). Mean implantation time was 7.8 years (1.5 to 12.1 range). Pain and/or loosening were the primary indications for revision. An Alicona Infinite microscope measured the entire superior surface of each insert (10× mag; 1.76µm lateral resolution). Abbott-Firestone curves were produced per insert to quantify the deviation of the insert surface from flat. Peak material volume (Vmp), core material volume (Vmc), core void volume (Vvc) and dale void volume (Vvv) were measured. Edge loading was identified visually by a depressed area in the insert surface indicative of articulation with the edge of the tibial component. Inserts were identified as either edge-loaded or not edge-loaded and the above analyses compared. Results. Seventeen inserts (53%) showed edge loading. Peak material volume (Vmp) was significantly increased for the edge loaded inserts 5.64 ± 5.42µm compared to the normal inserts 1.29 ± 0.954µm (Independent T-Test, P=0.005). No difference was found for the other volume parameters (Figure 2). A progressive change in insert form, beginning at the edges of the superior insert surface, was evident (Figure 1). Machining marks identified at the centre of several components supported this observation. Discussion. Insert edge loading affected 53% of TAR explants. The volume parameters showed a statistically significant inflection of material at the inserts' edge for the affected ankles. Spatial changes to insert form progressed over time in-vivo. Machining marks at the centre of several inserts remained which indicated the deformation/wear process commenced at the periphery of the insert. Normal ranges of volume change/redistribution are not established for TAR devices and the implications of insert form change are not yet understood. However, edge-loaded components composed over half of this cohort, which reflects the conflict between design simplicity and kinematic complexity. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Bone & Joint Research
Vol. 6, Issue 2 | Pages 113 - 122
1 Feb 2017
Scholes SC Hunt BJ Richardson VM Langton DJ Smith E Joyce TJ

Objectives. The high revision rates of the DePuy Articular Surface Replacement (ASR) and the DePuy ASR XL (the total hip arthroplasty (THA) version) have led to questions over the viability of metal-on-metal (MoM) hip joints. Some designs of MoM hip joint do, however, have reasonable mid-term performance when implanted in appropriate patients. Investigations into the reasons for implant failure are important to offer help with the choice of implants and direction for future implant designs. One way to assess the performance of explanted hip prostheses is to measure the wear (in terms of material loss) on the joint surfaces. Methods. In this study, a coordinate measuring machine (CMM) was used to measure the wear on five failed cementless Biomet Magnum/ReCap/ Taperloc large head MoM THAs, along with one Biomet ReCap resurfacing joint. Surface roughness measurements were also taken. The reason for revision of these implants was pain and/or adverse reaction to metal debris (ARMD) and/or elevated blood metal ion levels. Results. The mean wear rate of the articulating surfaces of the heads and acetabular components of all six joints tested was found to be 6.1 mm. 3. /year (4.1 to 7.6). The mean wear rate of the femoral head tapers of the five THAs was 0.054 mm. 3. /year (0.021 to 0.128) with a mean maximum wear depth of 5.7 µm (4.3 to 8.5). Conclusion. Although the taper wear was relatively low, the wear from the articulating surfaces was sufficient to provide concern and was potentially large enough to have been the cause of failure of these joints. The authors believe that patients implanted with the ReCap system, whether the resurfacing prosthesis or the THA, should be closely monitored. Cite this article: S. C. Scholes, B. J. Hunt, V. M. Richardson, D. J. Langton, E. Smith, T. J. Joyce. Explant analysis of the Biomet Magnum/ReCap metal-on-metal hip joint. Bone Joint Res 2017;6:113–122. DOI: 10.1302/2046-3758.62.BJR-2016-0130.R2


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 925 - 933
1 Jul 2016
Sidaginamale RP Joyce TJ Bowsher JG Lord JK Avery PJ Natu S Nargol AVF Langton DJ

Aims

We wished to investigate the influence of metal debris exposure on the subsequent immune response and resulting soft-tissue injury following metal-on-metal (MoM) hip arthroplasty. Some reports have suggested that debris generated from the head-neck taper junction is more destructive than equivalent doses from metal bearing surfaces.

Patients and Methods

We investigated the influence of the source and volume of metal debris on chromium (Cr) and cobalt (Co) concentrations in corresponding blood and hip synovial fluid samples and the observed agglomerated particle sizes in excised tissues using multiple regression analysis of prospectively collected data. A total of 199 explanted MoM hips (177 patients; 132 hips female) were analysed to determine rates of volumetric wear at the bearing surfaces and taper junctions.


Bone & Joint Research
Vol. 5, Issue 2 | Pages 52 - 60
1 Feb 2016
Revell PA Matharu GS Mittal S Pynsent PB Buckley CD Revell MP

Objectives

T-cells are considered to play an important role in the inflammatory response causing arthroplasty failure. The study objectives were to investigate the composition and distribution of CD4+ T-cell phenotypes in the peripheral blood (PB) and synovial fluid (SF) of patients undergoing revision surgery for failed metal-on-metal (MoM) and metal-on-polyethylene (MoP) hip arthroplasties, and in patients awaiting total hip arthroplasty.

Methods

In this prospective case-control study, PB and SF were obtained from 22 patients (23 hips) undergoing revision of MoM (n = 14) and MoP (n = 9) hip arthroplasties, with eight controls provided from primary hip osteoarthritis cases awaiting arthroplasty. Lymphocyte subtypes in samples were analysed using flow cytometry.


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 49 - 57
1 Jan 2016
Bonnin MP Saffarini M Bossard N Dantony E Victor J

Aims

Analysis of the morphology of the distal femur, and by extension of the femoral components in total knee arthroplasty (TKA), has largely been related to the aspect ratio, which represents the width of the femur. Little is known about variations in trapezoidicity (i.e. whether the femur is more rectangular or more trapezoidal). This study aimed to quantify additional morphological characteristics of the distal femur and identify anatomical features associated with higher risks of over- or under-sizing of components in TKA.

Methods

We analysed the shape of 114 arthritic knees at the time of primary TKA using the pre-operative CT scans. The aspect ratio and trapezoidicity ratio were quantified, and the post-operative prosthetic overhang was calculated. We compared the morphological characteristics with those of 12 TKA models.


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 33 - 39
1 Jan 2016
Sabah SA Henckel J Koutsouris S Rajani R Hothi H Skinner JA Hart AJ

Aims

The National Joint Registry for England, Wales and Northern Ireland (NJR) has extended its scope to report on hospital, surgeon and implant performance. Data linkage of the NJR to the London Implant Retrieval Centre (LIRC) has previously evaluated data quality for hip primary procedures, but did not assess revision records.

Methods

We analysed metal-on-metal hip revision procedures performed between 2003 and 2013. A total of 69 929 revision procedures from the NJR and 929 revised pairs of components from the LIRC were included.


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1458 - 1462
1 Nov 2015
Langlois J Atlan F Scemama C Courpied JP Hamadouche M

Most published randomised controlled trials which compare the rates of wear of conventional and cross-linked (XL) polyethylene (PE) in total hip arthroplasty (THA) have described their use with a cementless acetabular component.

We conducted a prospective randomised study to assess the rates of penetration of two distinct types of PE in otherwise identical cemented all-PE acetabular components.

A total of 100 consecutive patients for THA were randomised to receive an acetabular component which had been either highly XL then remelted or moderately XL then annealed.

After a minimum of eight years follow-up, 38 hips in the XL group and 30 hips in the annealed group had complete data (mean follow-up of 9.1 years (7.6 to 10.7) and 8.7 years (7.2 to 10.2), respectively). In the XL group, the steady state rate of penetration from one year onwards was -0.0002 mm/year (sd 0.108): in the annealed group it was 0.1382 mm/year (sd 0.129) (Mann–Whitney U test, p < 0.001). No complication specific to either material was recorded.

These results show that the yearly linear rate of femoral head penetration can be significantly reduced by using a highly XLPE cemented acetabular component.

Cite this article: Bone Joint J 2015;97-B:1458–62.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_13 | Pages 37 - 37
1 Sep 2014
van der Jagt D Pietzrak J Stein R
Full Access

Introduction. Antibiotic loaded polymethyle methacrylate spacers are commonly used in the management of septic hip replacements. Aim. The aim of this study was to determine wear patterns on the articulating surfaces of these spacers, as well as to determine the extent of PMMA particulate debris generation. Method. We took tissue specimens around the acetabulae in 12 cases at the time of the second stage procedure for septic total hip revisions. These were subjected to histological analysis to determine the extent of PMMA particulate debris contamination. We also performed a basic explant retrieval analysis of the articulating surfaces of the PMMA spacers to determine any specific wear patterns. Results. We found numerous PMMA particles in the acetabular soft tissues biopsied. The particle concentration was highest in the area of the acetabular fovea. We could also demonstrate specific wear patterns on the spacers that could be correlated with the generally mismatched articulating couple between the spacer and the bony acetabulum. We could also demonstrate some boney destruction present in the acetabulum with long-term spacer use. Conclusions. We concluded that significant amounts of PMMA particulate debris are generated by these articulating antibiotic spacers. The total volume of this debris may be determined by specific wear patterns on the spacers’ surfaces. We recommend a thorough debridement to decrease the PMMA particle load generated. Consideration in respect of the bearing surface implanted after the explantation of the PMMA spacer should take into account the effect of the debris on the bearing surfaces. We also make recommendations in respect of the design of these PMMA spacers


Bone & Joint Research
Vol. 3, Issue 3 | Pages 60 - 68
1 Mar 2014
Langton DJ Sidaginamale RP Holland JP Deehan D Joyce TJ Nargol AVF Meek RD Lord JK

Objectives

Wear debris released from bearing surfaces has been shown to provoke negative immune responses in the recipient. Excessive wear has been linked to early failure of prostheses. Analysis using coordinate measuring machines (CMMs) can provide estimates of total volumetric material loss of explanted prostheses and can help to understand device failure. The accuracy of volumetric testing has been debated, with some investigators stating that only protocols involving hundreds of thousands of measurement points are sufficient. We looked to examine this assumption and to apply the findings to the clinical arena.

Methods

We examined the effects on the calculated material loss from a ceramic femoral head when different CMM scanning parameters were used. Calculated wear volumes were compared with gold standard gravimetric tests in a blinded study.


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 747 - 757
1 Jun 2013
Jameson SS Baker PN Mason J Rymaszewska M Gregg PJ Deehan DJ Reed MR

The popularity of cementless total hip replacement (THR) has surpassed cemented THR in England and Wales. This retrospective cohort study records survival time to revision following primary cementless THR with the most common combination (accounting for almost a third of all cementless THRs), and explores risk factors independently associated with failure, using data from the National Joint Registry for England and Wales. Patients with osteoarthritis who had a DePuy Corail/Pinnacle THR implanted between the establishment of the registry in 2003 and 31 December 2010 were included within analyses. There were 35 386 procedures. Cox proportional hazard models were used to analyse the extent to which the risk of revision was related to patient, surgeon and implant covariates. The overall rate of revision at five years was 2.4% (99% confidence interval 2.02 to 2.79). In the final adjusted model, we found that the risk of revision was significantly higher in patients receiving metal-on-metal (MoM: hazard ratio (HR) 1.93, p < 0.001) and ceramic-on-ceramic bearings (CoC: HR 1.55, p = 0.003) compared with the best performing bearing (metal-on-polyethylene). The risk of revision was also greater for smaller femoral stems (sizes 8 to 10: HR 1.82, p < 0.001) compared with mid-range sizes. In a secondary analysis of only patients where body mass index (BMI) data were available (n = 17 166), BMI ≥ 30 kg/m2 significantly increased the risk of revision (HR 1.55, p = 0.002). The influence of the bearing on the risk of revision remained significant (MoM: HR 2.19, p < 0.001; CoC: HR 2.09, p = 0.001). The risk of revision was independent of age, gender, head size and offset, shell, liner and stem type, and surgeon characteristics.

We found significant differences in failure between bearing surfaces and femoral stem size after adjustment for a range of covariates in a large cohort of single-brand cementless THRs. In this study of procedures performed since 2003, hard bearings had significantly higher rates of revision, but we found no evidence that head size had an effect. Patient characteristics, such as BMI and American Society of Anesthesiologists grade, also influence the survival of cementless components.

Cite this article: Bone Joint J 2013;95-B:747–57.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 82 - 82
1 Sep 2012
Joyce T Lord J Nargol A Langton D
Full Access

Introduction. Total hip prostheses which use a ceramic head within a metal liner are a relatively recent innovation. As such, survivorship rates from independent centres alongside explant analysis are rare. The early clinical experience with this novel ceramic-on-metal (CoM) bearing couple is reported alongside explant analysis of failed devices. Methods and materials. All CoM hips implanted between 2008 and 2009 at a single hospital by a single surgeon were reviewed. Radiographs were analysed using EBRA software to determine acetabular cup inclination and anteversion angles. Blood metal ion concentrations were measured using inductively coupled plasma mass spectroscopy (ICPMS). Explants were measured for bearing surface and taper wear using a high precision co-ordinate measuring machine (Mitutoyo Legex 322, manufacturer's claimed accuracy 0.8µm). The roughness of the articulating surfaces of heads and liners was measured with a non-contact profilometer (ZYGO NewView 5000, 1nm resolution). Results. In 56 patients 56 CoM hips were implanted. Mean (range) age was 64 years (34–87). There were 41 females and 15 males. Patients were followed-up for a mean of 1.5 years. Three hips were revised at mean of 1.2 years (2 female, 1 male) with a further 3 listed for revision under 1.5 years giving an overall failure rate of 10.7%. All these patients reported with pain. X-rays of failed devices showed a characteristic pattern of femoral stem loosening. Serum cobalt and chromium were less than 2 micrograms/L. Explant analysis of the three revised hips showed wear at the liner rim in each case. In two of these cases the wear extended completely around the circumference. The wear volumes were 4.1, 2.0 and 2.3mm. 3. respectively. The ceramic heads were unworn but some transfer of metal could be seen visually. There was no significant wear or deformation at the taper junctions. Typical ceramic head roughness values were 3nm Ra and so most of the surface area of the heads remained in a pristine condition. Discussion. The high early failure rate using a COM articulation is concerning. Explant analysis suggests equatorial contacts with propagation of high frictional forces distally. These forces may have caused early loosening of the femoral stems. Orthopaedic surgeons and bioengineers need to be aware of this new mechanism of failure in this novel biomaterial coupling which is associated with low metal ions


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 7 - 7
1 Sep 2012
Gandhi J Sidaginamale R Mereddy P Langton D Joyce T Lord J Natu S Nargol A
Full Access

Background. The failure and subsequent withdrawal of the ASR device in both its resurfacing and THR form has been well documented. The National Joint Registry report of 2010 quoted figures of 12–13% failure at five years. Adverse reaction to metal debris (ARMD) is a poorly understood condition and patients developing severe metal reactions may go unrecognised for sometime. Patients and Methods. In 2004 a single surgeons prospective study of the ASR bearing surface was undertaken. We present the ARMD failure rates of the ASR resurfacing and ASR THR systems. The diagnosis of ARMD was made by the senior author and was based on clinical history, examination, ultrasound findings, metal ion analysis of blood and joint fluid, operative findings and histopathological analysis of tissues retrieved at revision. Mean follow up was 52 months (24–81) and 70 patients were beyond 6 years of the procedure at the time of writing. Kaplan Meier survival analysis was carried out firstly with joints designated “failure” if the patient had undergone revision surgery or if the patient had been listed. A second survival analysis was carried out with a failure defined as a serum cobalt > 7µg/L. Full explant analysis was carried out for retrieved prostheses. Results. There were 505 ASR patients in total. 657 metal ion samples were available at the time of writing (152 repeats). Survival analysis using revision/listed as end point (at 6 years):. ASR resurfacing: 26.1% failure. ASR THR: 55.5% failure. Survival using ion analysis (at 5 years):. ASR resurfacing: 50.1% failure. ASR THR: 66.5% failure. The median (range) volumetric wear rate of failed prosthesis was 8.23mm. 3. /year (0.51–95.5). Conclusion. A number of design flaws in the ASR has led to excessive wear of the bearing & taper leading to catastrophic failure secondary to ARMD