Numerous papers present in-vivo knee kinematics data following total knee arthroplasty (TKA) from fluoroscopic testing. Comparing data is challenging given the large number of factors that potentially affect the reported kinematics. This paper aims at understanding the effect of following three different factors: implant geometry, performed activity and analysis method. A total of 30 patients who underwent TKA were included in this study. This group was subdivided in three equal groups: each group receiving a different type of posterior stabilized total knee prosthesis. During single-plane
The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA). A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years.Aims
Methods
Introduction. A bicruciate retaining (BCR) TKA is thought to maintain a closer resemblance to the native knee kinematics compared to a posterior cruciate retaining (CR) TKA. With BCR TKAs retainment of the anterior cruciate ligament (ACL) facilitates proprioception and balance which is thought to lead to more natural knee kinematics and increased functional outcome. The aim of this study was to quantify and compare the kinematics of a BCR and CR TKA during functional tests. Materials and Methods. In this patient-blinded randomized controlled trial, a total of 40 patients with knee osteoarthritis were included, 18 of them received a BCR TKA (Vanguard XP, Zimmer-Biomet) and 22 received a CR TKA (Vanguard CR, Zimmer-Biomet).
The complex relationship between acetabular component position and spinopelvic mobility in patients following total hip arthroplasty (THA) renders it difficult to optimize acetabular component positioning. Mobility of the normal lumbar spine during postural changes results in alterations in pelvic tilt (PT) to maintain the sagittal balance in each posture and, as a consequence, markedly changes the functional component anteversion (FCA). This study aimed to investigate the in vivo association of lumbar degenerative disc disease (DDD) with the PT angle and with FCA during postural changes in THA patients. A total of 50 patients with unilateral THA underwent CT imaging for radiological evaluation of presence and severity of lumbar DDD. In all, 18 patients with lumbar DDD were compared to 32 patients without lumbar DDD. In vivo PT and FCA, and the magnitudes of changes (ΔPT; ΔFCA) during supine, standing, swing-phase, and stance-phase positions were measured using a validated dual fluoroscopic imaging system.Aims
Methods
The medially spherical GMK Sphere (Medacta International AG, Castel San Pietro, Switzerland) total knee arthroplasty (TKA) was previously shown to accommodate lateral rollback while pivoting around a stable medial compartment, aiming to replicate native knee kinematics in which some coronal laxity, especially laterally, is also present. We assess coronal plane kinematics of the GMK Sphere and explore the occurrence and pattern of articular separation during static and dynamic activities. Using pulsed fluoroscopy and image matching, the coronal kinematics and articular surface separation of 16 well-functioning TKAs were studied during weight-bearing and non-weight-bearing, static, and dynamic activities. The closest distances between the modelled articular surfaces were examined with respect to knee position, and proportions of joint poses exhibiting separation were computed.Objectives
Methods
Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle.Objectives
Methods
Background. The overall goal of total knee arthroplasty (TKA) is to facilitate the restoration of native function following late stage osteoarthritis and for this reason it is important to develop a thorough understanding of the mechanics of a normal healthy knee. While there are several methods for assessing TKA mechanics, these methods have limitations that make them prohibitive to both replicating physiological systems and evaluating non-implanted knees. These limitations can be circumvented through the development of mathematical models that use anatomical and physiological inputs to computationally simulate joint mechanics. This can be done in an inverse or forward manner to solve for either joint forces or motions respectively. The purpose of this study is to evaluate one such forward model and determine the accuracy of the predicted motions using fluoroscopy. Methods. In vivo kinematics were determined during flexion from full extension to 120 degrees for ten normal, healthy, subjects using fluoroscopy and a 3D-to-2D registration method. All ten subjects had previously undergone CT scans allowing for the digital reconstruction of native femur and tibia geometries. These geometries were then input into a ridged body forward model based on Kane's system of dynamics. The resulting kinematics determined through fluoroscopy and the mathematical model were compared for all of the ten subjects. Results. The three kinematic parameters evaluated for this study were the initial positioning and translation of the medial and lateral condylar contact point in addition to the axial position and rotation of the femur with respect to the tibia. The model simulations demonstrated an average of −2.16mm of medial condyle translation, −14.03mm of lateral condyle translation, and 20.09°of axial rotation. Through fluoroscopy, subjects demonstrated an average of −3.63mm of medial condyle translation, −16.02mm of lateral condyle translation, and 15.65°of axial rotation. Comparing these two methods the model predicted on average an additional 1.47mm of medial condyle translation, 1.98mm of lateral condyle translation, and 4.44° less axial rotation compared to the
Better functional outcomes, lower pain and better stability have been reported with knee designs which restore physiological knee kinematics. Also the ability of the TKA design to properly restore the physiological femoral rollback during knee flexion, has shown to be correlated with better restoration of the flexor/extensor mechanism, which is fundamental to the function of the human knee. The purpose of the study is to compare the kinematics of three different TKA designs, by evaluating knee motion during Activities of Daily Living. The second goal is to see if there is a correlation between the TKA kinematics and the patient reported outcomes. Ten patients of each design, who are at least 6 months after their Total Knee Replacement, will be included in this study. Seven satisfied and 3 dissatisfied patients will be selected for each design. In this study 5 different movements will be analysed: flexion/extension; Sitting on and rising from a chair, Stair climbing, descending stairs, Flexion and extension open chain and squatting. These movements will be captured with a fluoroscope. The 2D images that are obtained, will be matched with the 3D implants. This 3D image will be processed with custom-made software to be able to analyse the movement. Tibio-femoral contact points of the medial and lateral condyles, tibio-femoral axial rotation, determination of the pivot-point will be analysed and described. After this analysis, a correlation between the kinematics and the KOOS and KSS will be investigated.Introduction
Methods
Introduction. Better functional outcomes, lower pain and better stability have been reported with knee designs which restore physiological knee kinematics. Also the ability of the TKA design to properly restore the physiological femoral rollback during knee flexion, has shown to be correlated with better restoration of the flexor/extensor mechanism (appropriate flexor/extensor muscle lever arm, sufficient quadriceps force to extend the knee under load and limited patello-femoral force), which is fundamental to the function of the human knee. The purpose of the study is to compare the kinematics of three different TKA designs, by evaluating knee motion during Activities of Daily Living. The second goal is to see if there is a correlation between the TKA kinematics and the patient reported outcomes. Methods. Ten patients who are at least 6 months after their Total Knee Replacement are included in this study. Seven satisfied and 3 dissatisfied patients are selected for this design. In this study 5 different movements are being analysed: flexion/extension; Sitting on and rising from a chair, Stair climbing, descending stairs, Flexion and extension open chain and squatting. These movements will be captured with a fluoroscope. The 2D images that are obtained, are matched with the 3D implants. (see figure 1 and 2.) This 3D image is processed with custom-made software to be able to analyse the movement (figure 3.). Tibio-femoral contactpoints of the medial and lateral condyles, tibio-femoral axial rotation, determination of the pivot-point are analysed and described. After this analysis, a correlation between the kinematics and the KOOS and KSS is investigated. Results. Currently 6 patients underwent the
Because posterior cruciate ligament (PCL) resection makes flexion
gaps wider in total knee replacement (TKR), preserving or sacrificing
a PCL affects the gap equivalence; however, there are no criteria
for the PCL resection that consider gap situations of each knee.
This study aims to investigate gap characteristics of knees and
to consider the criteria for PCL resection. The extension and flexion gaps were measured, first with the
PCL preserved and subsequently with the PCL removed (in cases in
which posterior substitute components were selected). The PCL preservation
or sacrifice was solely determined by the gap measurement results,
without considering other functions of the PCL such as ‘roll back.’Objectives
Methods
Orthopaedic surgeons and their patients continue to seek better functional outcomes after total knee replacement, but TKA designs claim characteristic kinematic performance that is rarely assessed in patients. The objectives of this investigation is to determine the in vivo kinematics in knees with Cruciate Retaining TKA using Patient Specific Technology during activities of daily living and to compare the findings with previous studies of kinematics of other CR TKA designs. Four knees were operated by Triathlon CR TKA using Patient Specific Technology and a fluoroscopic measurement technique has been used to provide detailed three-dimensional kinematic assessment of knee arthroplasty function during three motor tasks. 3D
We investigated the characteristics of patients
who achieved Japanese-style deep flexion (seiza-sitting) after total knee
replacement (TKR) and measured three-dimensional positioning and
the contact positions of the femoral and tibial components. Seiza-sitting
was achieved after surgery by 23 patients (29 knees) of a series
of 463 TKRs in 341 patients. Pre-operatively most of these patients
were capable of seiza-sitting, had a lower body mass index and a favourable
attitude towards the Japanese lifestyle (27 of 29 knees). According
to two-/three-dimensional image registration analysis in the seiza-sitting
position, flexion, varus and internal rotation angles of the tibial
component relative to the femoral component had means of 148° ( Cite this article:
Introduction. Previous fluoroscopy studies have been conducted on numerous primary-type TKA, but minimal in vivo data has been documented for subjects implanted with revision TKA. If a subject requires a revision TKA, most often the ligament structures at the knee are compromised and stability of the joint is of great concern. In this present study, subjects implanted with a fixed or mobile bearing TC3 TKA are analyzed to determine if either provides the patient with a significant kinematic advantage. Methods. Ten subjects are analyzed implanted with fixed bearing PFC TC3 TKA and 10 subjects with a mobile bearing PFC TC3 TKA. Each subject underwent a
Introduction. Previous fluoroscopic studies compared total knee arthroplasty (TKA) kinematics to normal knees. It was our hypothesis that comparing TKA directly to its non-replaced controlateral knee may provide more realistic kinematics information. Using
Knee mechanics - Knee forces during ADL and sports activities in TKA patients. Background. Tibiofemoral forces are important in the design and clinical outcomes of TKA. Knee forces and kinematics have been estimated using computer models or traditionally have been measured under laboratory conditions. Although this approach is useful for quantitative measurements and experimental studies, the extrapolation of results to clinical conditions may not always be valid. We therefore developed a tibial tray combining force transducers and a telemetry system to directly measure tibiofemoral compressive forces in vivo. Methods. Tibial forces were measured for activities of daily living, athletic and recreational activities, and with orthotics and braces, for 4 years postoperatively. Additional measurements included video motion
Over the past decade, there has been an increase in the number of total knee arthropalsty (TKA). Demand of TKA for the young patients who often have high physical demands is also increasing. However, the revision rate in such young patients is much higher due to polyethylene (PE) wear and instability (Julin J, Acta Orthop 2010). Therefore, next generation total knee prostheses are expected to decrease PE wear and to provide stability. Although in vitro study such as wear simulator test provides important information about PE wear, we have often encountered the discrepancy between the in vitro results and in vivo results. Thus we have performed in vivo PE wear particle analysis, and showed that in vivo PE wear was affected by the design of articulating surface and the materials of femoral component and PE insert (Minoda Y, JBJS Am 2009). Medial pivot design, ceramic femoral component, and highly cross-linked PE decreased in vivo PE wear particle generation. Patients who underwent bilateral staged TKAs were more likely to prefer medial pivot prosthesis or ACL-PCL retaining prosthesis than the other types of prostheses, because they feels “more stable overall” (Pritchett JW, J Arthroplasty 2011). In vivo
In general TKA can be divided into two distinct groups: cruciate retaining and cruciate substituting. The cam and post of the latter system is in fact a mechanical substitution of the intricate posterior cruciate ligament. In our previous work we and many other investigators have focused on the movement of the femoral component relative to the tibial tray. Little information is available about the relative movement between the cam part of the femoral component and the post of the tibial insert. In this study we determine the distance and the changes in distance between the cam of the femoral component and the tibial post during extension, flexion at 90° and full flexion. The secondary purpose is to analyse possible differences between FBPS and MBPS TKA. Methods. 12 subjects' knees were imaged using fluoroscopy from extension over 90° to maximum kneeling flexion. The images were digitized. The 3-dimensional (3D) position and orientation of the implant components were determined using model-based shape-matching techniques, manual matching, and image-space optimization routines. The implant surface model was projected onto the geometry-corrected image, and its 3D pose was iteratively adjusted to match its silhouette with the silhouette of the subject's TKA components. The results of this shapematching process have standard errors of approximately 0.5° to 1.0° for rotations and 0.5 mm to 1.0 mm for translations in the sagittal plane. Joint kinematics were determined from the 3D pose of each TKA component using the 3-1-2 Cardan angle convention. This process resulted in a distance map of the femoral and tibial surfaces, from which the minimum separations were determined for the purpose of this study between cam and post (fig1.). Separation distances between the tibial polyethylene (PE) insert's post and the femoral prosthesis component have been calculated in three steps. First, the surface models of all three components as well as their position and orientation were extracted from the data files produced by the
Kneeling is one of important motion in Asians culture, also there were teachers of tea or flower ceremony who sit seiza routinely. But also, people in the Middle East need deep flexion keeling when they pray. At the symposium with the title of “A Challenge of deep flexion after TKA”, held at the 33rd Annual Meeting of Japanese Society of Reconstructive Arthroplasty in 2003, it was agreed that the definition of post-operative deep flexion to be more than 130 degrees of flexion. Four hundred and seventy two patients treated with a total of 598 consecutive primary total knee arthroplasties were performed and 480 knees were followed for 4.1 to 10.6 years(mean, 7.2 years). Preoperatively, the mean Hospital for Special Surgery knee score was 45.8 points. At the time of latest follow-up, the mean knee score was 88.5 points. The mean preoperative and postoperative ranges of flexion were 116 and 134 degrees, respectively. No knee developed osteolysis, aseptic loosening. A revision operation was performed in 3 knees because of infection. Achieving deep flexion is multi-factorial, such as preoperative planning, surgical procedure, prosthesis design, and postoperative rehabilitation. About surgical tips for deep flexion, posterior positioning of femoral component will increase the femoral posterior offset and decrease the anterior patello-femoral pressure. Through osteophyte removal will increase the posterior clearance and avoid the bone-polyethylene impingement. The flexion gap should be balanced after creating a balanced extension gap, since preparation of the flexion gap affects the extension gap in TKA. Based upon studies of the healthy knee in deep flexion, it was hypothesized that deep flexion would require tibial internal rotation greater than 20 degrees, greater posterior translation of the lateral femoral condyle than the medial condyle, and subluxation of the articular surfaces in terminal flexion. However, as the results of our
Purpose of the study: Comprehension of total knee arthroplasty (TKA) kinematics is primordial for improving the functional outcome and longevity of these prostheses. Several methods are available for evaluating knee kinematics. The purpose of this study was to determine the accuracy of the 2D fluoroscopic method in vitro, taking optoelectronic analysis as the gold standard. Material and methods: In order to compare these two techniques, a posterior stabilised prosthesis was implanted on dry bones. The lateral ligaments were modellised with two elastic bands. Thirty flexion movements were imposed consecutively. The kinematics of this prosthetic model were recorded simultaneously using the fluoroscope and a computer-assisted surgery system. The technique used for the
Introduction: Mobile bearing total knee arthroplasty (TKA) has been developed to theoretically provide a better, more physiological function of the knee and produce less polyethylene (PE) wear. The theoretical superiority of mobile bearing TKA’s over fixed bearing devices has not yet been proven in clinical studies. The objective of the present study was to analyze in vivo the knee joint kinematics in the sagittal plane in a patient population that had received either a fixed or a mobile TKA in a prospective, randomized, patient- and observer-blinded, clinical study. Methods: 31 patients were evaluated by means of fluoroscopy during unloaded flexion and extension against gravity, as well as during step-up and step-down with full weight bearing. In these 31 patients, 22 fixed bearing TKAs, 16 mobile-bearing TKAs and 19 natural knee joints were included. All patients had been operated in a prospective, randomized, patient- and observer-blinded, clinical study, and had received either fixed or a mobile bearing, cruciate retaining Genesis II TKA for primary osteoarthritis. Fluoroscopic radiographs were evaluated by measuring the „patella tendon angle” as a measure of antero-posterior translation as well as the “kinematic index” as a measure of reproducibility. Results: During unloaded movement,