Advertisement for orthosearch.org.uk
Results 1 - 20 of 23
Results per page:
Bone & Joint 360
Vol. 13, Issue 6 | Pages 41 - 44
1 Dec 2024

The December 2024 Children’s orthopaedics Roundup. 360. looks at: Establishing best practice for managing idiopathic toe walking in children: a UK consensus; Long-term outcomes of below-elbow casting in paediatric diaphyseal forearm fractures; Residual dysplasia risk persists in developmental dysplasia of the hip patients after Pavlik harness treatment; 3D printing in paediatricorthopaedics: enhancing surgical efficiency and patient outcomes; Pavlik harness treatment for hip dysplasia does not delay motor skill development in children; High prevalence of hip dysplasia found in adolescents with idiopathic scoliosis on routine spine radiographs; Minifragment plates as effective growth modulation for ulnar deformities of the distal radius in children; Long-term success of Chiari pelvic osteotomy in preserving hip function: 30-year follow-up study


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 24 - 24
2 Jan 2024
Burgos J Mariscal G Antón-Rodrigálvarez L Sanpera I Hevia E García V Barrios C
Full Access

The aim of this study was to report the restauration of the normal vertebral morphology and the absence of curve progression after removal the instrumentation in AIS patients that underwent posterior correction of the deformity by common all screws construct whitout fusion. A series of 36 AIS immature patients (Risser 3 or less) were include in the study. Instrumentation was removed once the maturity stage was complete (Risser 5). Curve correction was assessed at pre and postoperative, before instrumentation removal, just post removal, and more than two years after instrumentation removal. Epiphyseal vertebral growth modulation was assessed by a coronal wedging ratio (WR) at the apical level of the main curve (MC). The mean preoperative coronal Cobb was corrected from 53.7°±7.5 to 5.5º±7.5º (89.7%) at the immediate postop. After implants removal (31.0±5.8 months) the MC was 13.1º. T5–T12 kyphosis showed a significant improvement from 19.0º before curve correction to 27.1º after implants removal (p<0.05). Before surgery, WR was 0.71±0.06, and after removal WR was 0.98±0.08 (p<0.001). At the end of follow-up, the mean sagittal range of motion (ROM) of the T12-S1 segment was 51.2±21.0º. SRS-22 scores improved from 3.31±0.25 preoperatively to 3.68±0.25 at final assessment (p<0.001). In conclusion, fusionless posterior approach using a common all pedicle screws construct correct satisfactory scoliotic main curves and permits removal of the instrumentation once the bone maturity is reached. The final correction was highly satisfactory and an acceptable ROM of the previously lower instrumented segments was observed


Bone & Joint 360
Vol. 12, Issue 6 | Pages 42 - 45
1 Dec 2023

The December 2023 Children’s orthopaedics Roundup360 looks at: A comprehensive nonoperative treatment protocol for developmental dysplasia of the hip in infants; How common are refractures in childhood?; Femoral nailing for paediatric femoral shaft fracture in children aged eight to ten years; Who benefits from allowing the physis to grow in slipped capital femoral epiphysis?; Paediatric patients with an extremity bone tumour: a secondary analysis of the PARITY trial data; Split tibial tendon transfers in cerebral palsy equinovarus foot deformities; Liposomal bupivacaine nerve block: an answer to opioid use?; Correction with distal femoral transphyseal screws in hemiepiphysiodesis for coronal-plane knee deformity.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 33 - 33
17 Nov 2023
Goyal S Winson D Carpenter E
Full Access

Abstract. Objectives. Epiphysiodesis is a commonly used treatment for lower limb angular deformities. However, in recent years, distal tibial growth modulation using ‘eight plates’ or screws has emerged as an alternative treatment for paediatric foot and ankle disorders, such as CTEV. Our objective was to assess the efficacy of distal tibial modulation in correcting various paediatric foot and ankle disorders. Methods. This retrospective study analysed 205 cases of paediatric foot and ankle disorders treated between 2003 and 2022, including only cases where the eight plate or screw was fixed on the anterior surface of the distal tibia. Our aim was to measure post-operative changes in dorsiflexion, the distal tibial angle, and the tibiocalcaneal angle by examining clinical records and radiology reports. Results. We identified nine cases (nine feet) meeting the full inclusion criteria, comprising seven cases of CTEV, one case of arthrogryposis, and one case of cavovarus foot. The cohort consisted of five male and four female patients, with a mean age of 10 years and 9 months at the time of surgery. Seven cases involved the left tibia, and two cases involved the right tibia. The mean time between pre-operative X-ray to surgery was 168 days, and the mean turnaround time between surgery and post-operative X-ray was 588 days. A mean change in the distal tibial angle of 4.33 degrees was noted. However, changes in dorsiflexion were documented in only one case, which showed a change of 13 degrees. Notably, our average distal tibial angle was significantly lower than reported in the literature, at 4.33 degrees. Additionally, some studies in the literature used the Oxford Ankle Foot Questionnaire for Children to assess pre- and post-operative outcomes, but it is important to note that it is validated only for children aged 5 to 16. Furthermore, most cases reported an improved tibiocalcaneal angle except for an anomaly of 105 degrees. We assessed satisfactory patient outcomes using patient notes. Out of the 6 procured notes, one has been discharged. The rest are still under yearly or 6-monthly review and are at various stages, such as physiotherapy, removing the eight plate, or requiring further surgery. The most common presentations at review are plantaris deformity and pain. Conclusions. Our study suggests that distal tibial growth modulation can be an effective treatment option for selected paediatric foot and ankle disorders. However, due to the limited number of cases in our study, the lack of documentation of changes in dorsiflexion, and a lack of pre- and post-operative outcomes using a standardised method, further research is needed to investigate this procedure's long-term outcomes and potential complications. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 117 - 117
11 Apr 2023
Roser M Izatt M Labrom R Askin G Little P
Full Access

Anterior vertebral body tethering (AVBT) is a growth modulating procedure used to manage idiopathic scoliosis by applying a flexible tether to the convex surface of the spine in skeletally immature patients. The purpose of this study is to determine the preliminary clinical outcomes for an adolescent patient cohort. 18 patients with scoliosis were selected using a narrow selection criteria to undergo AVBT. Of this cohort, 11 had reached a minimum follow up of 2 years, 4 had reached 18 months, and 3 had reached 6 months. These patients all demonstrated a primary thoracic deformity that was too severe for bracing, were skeletally immature, and were analysed in this preliminary study of coronal plane deformity correction. Using open-source image analysis software (ImageJ, NIH) PA radiographs taken pre-operatively and at regular follow-up visits post-operatively were used to measure the coronal plane deformity of the major and compensatory curves. Pre-operatively, the mean age was 12.0 years (S.D. 10.7 – 13.3), mean Sanders score 2.6 (S.D. 1.8-3.4), all Risser 0 and pre-menarchal, with mean main thoracic Cobb angle of 52° (S.D. 44.2-59.8°). Post-operatively the mean angle decreased to 26.4° (S.D. 18.4-32°) at 1 week, 30.4° (S.D. 21.3-39.6°) at 2 months, 25.7° (S.D. 18.7-32.8°) at 6 months, 27.9° (S.D. 16.2-39.6°) at 12 months, and 36.8° (S.D. 22.6– 51.0°) at 18 months and 38.2° (S.D. 27.6-48.7°) at 2 years. The change in curve at 2 years post-operative was statistically significant (P=0.004). There were 4 tether breakages identified that did not require return to theatre as yet, one patient underwent a posterior spinal instrumented fusion due to curve progression. AVBT is a promising new growth modulation technique for skeletally immature patients with progressive idiopathic scoliosis. This study has demonstrated a reduction in scoliosis severity


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 32 - 32
1 Nov 2022
Bernard J Bishop T Herzog J Haleem S Ajayi B Lui D
Full Access

Abstract. Aims. Vertebral body tethering (VBT) is a non-fusion technique to correct scoliosis allowing correction of scoliosis through growth modulation (GM) by tethering the convex side to allow concave unrestricted growth similar to the hemiepiphysiodesis concept. The other modality is anterior scoliosis correction (ASC) where the tether is able to perform most of the correction immediately where limited growth is expected. Methods. A retrospective analysis of 20 patients (M:F=19:1 – 9–17 years) between January 2014 to December 2016 with a mean five-year follow-up (4 to 7). Results. There were ten patients in each group with a total of 23 curves operated upon. VBT-GM mean age −12.5 years (9 to 14), mean Risser of 0.63 (0 to 2) and VBT-ASC was 14.9 years (13 to 17) and mean Risser of 3.66 (3 to 5). Mean preoperative VBT-GM Cobb was 47.4° (40°–58°) compared to VBT-ASC 56.5° (40°–79°). Postoperative VBT-GM Cobb was 20.3° and VBT-ASC was 11.2°. The early postoperative correction rate was 54.3% versus 81% whereas Fulcrum Bending Correction Index (FBCI) was 93.1% vs 146.6%. Latest Cobb angle at mean five years' follow-up was 19.4° (VBT-GM) and 16.5° (VBT-ASC). Overall, 5% of patients required fusion. Conclusion. We show a high success rate (95%) in helping children avoid fusion at five years post-surgery. VBT is a safe technique for scoliosis correction in the skeletally immature patient. This is the first report at five years showing two possible options of VBT depending on the skeletal maturity of the patient: GM and ASC


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 6 - 6
1 Apr 2022
Moore D Noonan M Kelly P Moore D
Full Access

Introduction. Angular deformity in the lower extremities can result in pain, gait disturbance, deformity and joint degeneration. Guided growth modulation uses the tension band principle with the goal of treatment being to normalise the mechanical axis. To assess the success of this procedure we reviewed our results in an attempt to identify patients who may not benefit from this simple and elegant procedure. Materials and Methods. We reviewed the surgical records and imaging in our tertiary children's hospital to identify all patients who had guided growth surgery since 2007. We noted the patient demographics, diagnosis, peri-operative experience and outcome. All patients were followed until skeletal maturity or until metalwork was removed. Results. 173 patients with 192 legs were assessed for eligibility. Six were excluded due to inadequate follow-up or loss of records. Of the 186 treated legs meeting criteria for final assessment 19.8% were unsuccessful, the other 80.2% were deemed successful at final follow up. Complications included infection and metal-work failure. Those with a pre-treatment diagnosis of idiopathic genu valgum/ varum had a success rate of 83.6%. Conclusions. In our hands, guided growth had an 80-percent success rate when all diagnosis were considered. Those procedures that were unlikely to be successful included growth disturbances due to mucopolysaccharide storage disease, Blounts disease and achondroplasia. Excluding those three diagnoses, success rate was 85.4%. We continue to advocate the use of guided growth as a successful treatment option for skeletally immature patients with limb deformity


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 26 - 26
1 Apr 2022
Parnami V Shah V Ranmuthuge S Giles S Fernandes J
Full Access

Introduction. To evaluate the results of correction of knee deformities based on deformity analysis in Achondroplasia, the commonest skeletal dysplasia as some have concomitant ligamentous deformities. Materials and Methods. Retrospective study from a prospective database (2007–2020) of achondroplasts who underwent growth modulation. Analysis of medical records with objective measurement of mechanical axis radiographs was done (Traumacad). Satisfactory alignment was defined as neutral to slightly varus (0–15 mm MAD) so that the MCL/LCL laxity is not revealed. Results. 23 patients, 41 limbs, 34 bilateral, 6 unilateral underwent multiple growth modulation procedures. 2 had valgus knees. 15 patients underwent proximal fibular epiphysiodesis in addition for LCL laxity with one isolated fibular epiphysiodesis. Mechanical axis deviation (MAD) improved or normalised in 16 patients (70%). 4 patients were still undergoing correction. 4 patients needed further surgery out of which 2 patients were over 13 years when growth modulation was attempted and 2 needed correction of ankle varus. JLCA improved/ normalised in 12 patients (75%) with evidence of indirect LCL tightening and no improvement was seen in 4. The rate of correction was MAD 0.61mm/month, LDFA 0.29°/month and MPTA 0.13°/month; expectedly lower in achondroplasia due to lower growth velocity. Conclusions. This study highlights the pathology, application of growth modulation as per deformity analysis unlike previous studies. Proximal fibular epiphysiodesis improves LCL laxity in a majority of these children and is a simple procedure compared to our published series with indirect LCL tightening with frames


Bone & Joint Open
Vol. 3, Issue 2 | Pages 123 - 129
1 Feb 2022
Bernard J Bishop T Herzog J Haleem S Lupu C Ajayi B Lui DF

Aims. Vertebral body tethering (VBT) is a non-fusion technique to correct scoliosis. It allows correction of scoliosis through growth modulation (GM) by tethering the convex side to allow concave unrestricted growth similar to the hemiepiphysiodesis concept. The other modality is anterior scoliosis correction (ASC) where the tether is able to perform most of the correction immediately where limited growth is expected. Methods. We conducted a retrospective analysis of clinical and radiological data of 20 patients aged between 9 and 17 years old, (with a 19 female: 1 male ratio) between January 2014 to December 2016 with a mean five-year follow-up (4 to 7). Results. There were ten patients in each group with a total of 23 curves operated on. VBT-GM mean age was 12.5 years (9 to 14) with a mean Risser classification of 0.63 (0 to 2) and VBT-ASC was 14.9 years (13 to 17) with a mean Risser classification of 3.66 (3 to 5). Mean preoperative VBT-GM Cobb was 47.4° (40° to 58°) with a Fulcrum unbend of 17.4 (1° to 41°), compared to VBT-ASC 56.5° (40° to 79°) with 30.6 (2° to 69°)unbend. Postoperative VBT-GM was 20.3° and VBT-ASC Cobb angle was 11.2°. The early postoperative correction rate was 54.3% versus 81% whereas Fulcrum Bending Correction Index (FBCI) was 93.1% vs 146.6%. The last Cobb angle on radiograph at mean five years’ follow-up was 19.4° (VBT-GM) and 16.5° (VBT-ASC). Patients with open triradiate cartilage (TRC) had three over-corrections. Overall, 5% of patients required fusion. This one patient alone had a over-correction, a second-stage tether release, and final conversion to fusion. Conclusion. We show a high success rate (95%) in helping children avoid fusion at five years post-surgery. VBT is a safe technique for correction of scoliosis in the skeletally immature patient. This is the first report at five years that shows two methods of VBT can be employed depending on the skeletal maturity of the patient: GM and ASC. Cite this article: Bone Jt Open 2022;3(2):123–129


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 257 - 264
1 Feb 2022
Tahir M Mehta D Sandhu C Jones M Gardner A Mehta JS

Aims. The aim of this study was to compare the clinical and radiological outcomes of patients with early-onset scoliosis (EOS), who had undergone spinal fusion after distraction-based spinal growth modulation using either traditional growing rods (TGRs) or magnetically controlled growing rods (MCGRs). Methods. We undertook a retrospective review of skeletally mature patients who had undergone fusion for an EOS, which had been previously treated using either TGRs or MCGRs. Measured outcomes included sequential coronal T1 to S1 height and major curve (Cobb) angle on plain radiographs and any complications requiring unplanned surgery before final fusion. Results. We reviewed 43 patients (63% female) with a mean age of 6.4 years (SD 2.6) at the index procedure, and 12.2 years (SD 2.2) at final fusion. Their mean follow-up was 8.1 years (SD 3.4). A total of 16 patients were treated with MCGRs and 27 with TGRs. The mean number of distractions was 7.5 in the MCGR group and ten in the TGR group (p = 0.471). The mean interval between distractions was 3.4 months in the MCGR group and 8.6 months in the TGR group (p < 0.001). The mean Cobb angle had improved by 25.1° in the MCGR group and 23.2° in TGR group (p = 0.664) at final follow-up. The mean coronal T1 to S1 height had increased by 16% in the MCGR group and 32.9% in TGR group (p = 0.001), although the mean T1 to S1 height achieved at final follow-up was similar in both. Unplanned operations were needed in 43.8% of the MCGR group and 51.2% of TGR group (p = 0.422). Conclusion. In this retrospective, single-centre review, there were no significant differences in major curve correction or gain in spinal height at fusion. Although the number of planned procedures were fewer in patients with MCGRs, the rates of implant-related complications needing unplanned revision surgery were similar in the two groups. Cite this article: Bone Joint J 2022;104-B(2):257–264


Bone & Joint Open
Vol. 3, Issue 1 | Pages 85 - 92
27 Jan 2022
Loughenbury PR Tsirikos AI

The development of spinal deformity in children with underlying neurodisability can affect their ability to function and impact on their quality of life, as well as compromise provision of nursing care. Patients with neuromuscular spinal deformity are among the most challenging due to the number and complexity of medical comorbidities that increase the risk for severe intraoperative or postoperative complications. A multidisciplinary approach is mandatory at every stage to ensure that all nonoperative measures have been applied, and that the treatment goals have been clearly defined and agreed with the family. This will involve input from multiple specialities, including allied healthcare professionals, such as physiotherapists and wheelchair services. Surgery should be considered when there is significant impact on the patients’ quality of life, which is usually due to poor sitting balance, back or costo-pelvic pain, respiratory complications, or problems with self-care and feeding. Meticulous preoperative assessment is required, along with careful consideration of the nature of the deformity and the problems that it is causing. Surgery can achieve good curve correction and results in high levels of satisfaction from the patients and their caregivers. Modern modular posterior instrumentation systems allow an effective deformity correction. However, the risks of surgery remain high, and involvement of the family at all stages of decision-making is required in order to balance the risks and anticipated gains of the procedure, and to select those patients who can mostly benefit from spinal correction.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 16 - 16
1 Sep 2021
Bernard J Herzog J Bishop T Fragkakis A Fenner C Ajayi B Lui DF
Full Access

Introduction. Vertebral body tethering (VBT) is a non-fusion technique to correct scoliosis. It allows correction of scoliosis through Growth Modulation (GM) by tethering the convex side to allow concave unrestricted growth similar to the hemi-epiphysiodesis concept. The other modality is Anterior Scoliosis Correction (ASC) where the tether is able to perform most of the correction immediately where limited growth is expected. Methods. Retrospective analysis of clinical and radiographic data of 20 patients between 2014 to 2016 with a mean 5 year follow (range 4–6). Results. There were 10 patients in each group with a total of 23 curves operated on. VBT-GM mean age was 12.5y with mean Risser 0.63 and VBT-ASC was14.9y with a Risser of 3.66. Mean preop VBT-GM Cobb was 46° with a Fulcrum unbend of 13.6° compared to VBT-ASC 56.9° with 32.2° unbend. Postop VBT-GM was 21° and VBT-ASC Cobb was 10.8°. The early postop Correction Rate was 54.3% vs 81% whereas FBCI was 77.1% vs 186.6%. The last XR at mean 5y was 22.2° (VBT-GM) and 16.9° (VBT-ASC) 95% avoided fusion. Open TRC group had 3 over corrections. 1 patient alone had overcorrection, unplanned second stage and conversion to fusion. Discussion and Conclusion. We show a high success rate (95%) in helping children avoid fusion. Vertebral body tethering is a safe technique for correction of scoliosis in the skeletally immature patient. This is the first report at 5 years that shows two modalities of VBT can be employed depending on the skeletal maturity of the patient: Growth Modulation and Anterior Scoliosis Correction


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1412 - 1418
3 Oct 2020
Ballhause TM Stiel N Breyer S Stücker R Spiro AS

Aims

Eight-plates are used to correct varus-valgus deformity (VVD) or limb-length discrepancy (LLD) in children and adolescents. It was reported that these implants might create a bony deformity within the knee joint by change of the roof angle (RA) after epiphysiodesis of the proximal tibia following a radiological assessment limited to anteroposterior (AP) radiographs. The aim of this study was to analyze the RA, complemented with lateral knee radiographs, with focus on the tibial slope (TS) and the degree of deformity correction.

Methods

A retrospective, single-centre study was conducted. The treatment group (n = 64 knees in 44 patients) was subclassified according to the implant location in two groups: 1) medial hemiepiphysiodesis; and 2) lateral hemiepiphysiodesis. A third control group consisted of 25 untreated knees. The limb axes and RA were measured on long standing AP leg radiographs. Lateral radiographs of 40 knees were available for TS analysis. The mean age of the patients was 10.6 years (4 to 15) in the treatment group and 8.4 years (4 to 14) in the control group. Implants were removed after a mean 1.2 years (0.5 to 3).


The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1187 - 1200
1 Sep 2018
Subramanian T Ahmad A Mardare DM Kieser DC Mayers D Nnadi C

Aims

Magnetically controlled growing rod (MCGR) systems use non-invasive spinal lengthening for the surgical treatment of early-onset scoliosis (EOS). The primary aim of this study was to evaluate the performance of these devices in the prevention of progression of the deformity. A secondary aim was to record the rate of complications.

Patients and Methods

An observational study of 31 consecutive children with EOS, of whom 15 were male, who were treated between December 2011 and October 2017 was undertaken. Their mean age was 7.7 years (2 to 14). The mean follow-up was 47 months (24 to 69). Distractions were completed using the tailgating technique. The primary outcome measure was correction of the radiographic deformity. Secondary outcomes were growth, functional outcomes and complication rates.


Bone & Joint 360
Vol. 6, Issue 6 | Pages 36 - 38
1 Dec 2017


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 37 - 37
1 Dec 2016
Leveille L Razi O Johnston C
Full Access

With observed success and increased popularity of growth modulation techniques, there has been a trend towards use in progressively younger patients. Younger age at growth modulation increases the likelihood of complete deformity correction and need for implant removal prior to skeletal maturity introducing the risk of rebound deformity. The purpose of this study was to quantify magnitude and identify risk factors for rebound deformity after growth modulation. We performed a retrospective review of all patients undergoing growth modulation with a tension band plate for coronal plane deformity about the knee with subsequent implant removal. Exclusion criteria included completion epiphysiodesis or osteotomy at implant removal, ongoing growth modulation, and less than one year radiographic follow-up without rebound deformity. Mechanical lateral distal femoral angle (mLDFA), mechanical medial proximal tibial angle (mMPTA), hip-knee-ankle angle (HKA), and mechanical axis station were measured prior to growth modulation, prior to implant removal, and at final follow-up. Sixty-seven limbs in 45 patients met the inclusion criteria. Mean age at growth modulation was 9.8 years (range 3.4–15.4 years) and mean age at implant removal was 11.4 years (range 5.3–16.4 years). Mean change in HKA after implant removal was 6.9O (range 0O–23 O). Fifty-two percent of patients had greater than 5O rebound and 30% had greater than 10O rebound in HKA after implant removal. Females less than ten years and males less than 12 years at time of growth modulation had greater mean change in HKA after implant removal compared to older patients (8.4O vs 4.7O, p=0.012). Patients with initial deformity greater than 20O degrees had an increased frequency of rebound greater than 10O compared to patients with less severe initial deformity (78% vs 22%, p=0.002). Rebound deformity after growth modulation is common. Growth modulation at a young age and large initial deformity increases risk of rebound. However, rebound does not occur in all at risk patients, therefore, we caution against routine overcorrection. Patients and their families should be informed about the risk of rebound deformity after growth modulation and the potential for multiple surgical interventions prior to skeletal maturity


Bone & Joint Research
Vol. 3, Issue 9 | Pages 273 - 279
1 Sep 2014
Vasiliadis ES Kaspiris A Grivas TB Khaldi L Lamprou M Pneumaticos SG Nikolopoulos K Korres DS Papadimitriou E

Objectives

The aim of this study was to examine whether asymmetric loading influences macrophage elastase (MMP12) expression in different parts of a rat tail intervertebral disc and growth plate and if MMP12 expression is correlated with the severity of the deformity.

Methods

A wedge deformity between the ninth and tenth tail vertebrae was produced with an Ilizarov-type mini external fixator in 45 female Wistar rats, matched for their age and weight. Three groups were created according to the degree of deformity (10°, 30° and 50°). A total of 30 discs and vertebrae were evaluated immunohistochemically for immunolocalisation of MMP12 expression, and 15 discs were analysed by western blot and zymography in order to detect pro- and active MMP12.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 270 - 275
1 Feb 2012
Ilharreborde B Gaumetou E Souchet P Fitoussi F Presedo A Penneçot GF Mazda K

Percutaneous epiphysiodesis using transphyseal screws (PETS) has been developed for the treatment of lower limb discrepancies with the aim of replacing traditional open procedures. The goal of this study was to evaluate its efficacy and safety at skeletal maturity. A total of 45 consecutive patients with a mean skeletal age of 12.7 years (8.5 to 15) were included and followed until maturity. The mean efficacy of the femoral epiphysiodesis was 35% (14% to 87%) at six months and 66% (21% to 100%) at maturity. The mean efficacy of the tibial epiphysiodesis was 46% (18% to 73%) at six months and 66% (25% to 100%) at maturity. In both groups of patients the under-correction was significantly reduced between six months post-operatively and skeletal maturity. The overall rate of revision was 18% (eight patients), and seven of these revisions (87.5%) involved the tibia. This series showed that use of the PETS technique in the femur was safe, but that its use in the tibia was associated with a significant rate of complications, including a valgus deformity in nine patients (20%), leading us to abandon it in the tibia. The arrest of growth was delayed and the final loss of growth at maturity was only 66% of that predicted pre-operatively. This should be taken into account in the pre-operative planning.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 273 - 276
1 Feb 2010
Ballal MS Bruce CE Nayagam S

A total of 25 children (37 legs and 51 segments) with coronal plane deformities around the knee were treated with the extraperiosteal application of a flexible two-hole plate and screws. The mean age was 11.6 years (5.5 to 14.9), the median angle of deformity treated was 8.3° and mean time for correction was 16.1 months (7 to 37.3). There was a mean rate of correction of 0.7° per month in the femur (0.3° to 1.5°), 0.5° per month in the tibia (0.1° to 0.9°) and 1.2° per month (0.1° to 2.2°) if femur and tibia were treated concurrently. Correction was faster if the child was under 10 years of age (p = 0.05). The patients were reviewed between six and 32 months after plate removal. One child had a rebound deformity but no permanent physeal tethers were encountered.

The guided growth technique, as performed using a flexible titanium plate, is simple and safe for treating periarticular deformities of the leg.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 441 - 441
1 Sep 2009
Shillington M Adam C Askin G Labrum R
Full Access

Introduction: The use of anterior vertebral staples in the fusionless correction of scoliosis has received increased attention in recent literature. Several animal studies have shown stapling to be effective in modulating vertebral growth. In 2005 Betz (1) published the only clinical series to date. Despite the increasing volume of literature suggesting the efficacy of this treatment, little is known about it’s biomechanical consequences. In 2007 Puttlitz (2) measured the change in spinal range of motion after staple insertion in a bovine model. They found a small but statistically significant decrease in range of motion in axial rotation and lateral bending. The clinical significance of this is questionable as the differences were only a few degrees over three vertebral levels. A well designed biomechanical evaluation of the effects of staple insertion on spinal stability is needed. The aim of this study was to evaluate the effect of insertion of a laterally placed anterior vertebral staple on the stiffness characteristics of a single motion segment. Methods: Four-pronged shape memory alloy staples were inserted into fourteen individual bovine thoracic motion segments. A displacement controlled six degree-of-freedom robotic facility was used to test control and staple constructs through a pre-determined range of motion in flexion, extension, lateral bending, and axial rotation. All data were synchronised with robot position data and filtered using moving average methods. The stiffness in each condition was calculated in units of Nm/degree of rotation. Paired t-tests were used to compare results. Results: Stiffness measurements in the control condition correlated with previously published measures (3). A significant decrease in stiffness (p< 0.05) following staple insertion was found in flexion, extension, lateral bending away from the staple, and axial rotation away from the staple. Stiffness for axial rotation towards the stapled side was significantly greater than for away. A near significant increase in lateral bend stiffness away from the staple compared with towards was also seen. Discussion: These results suggest that staple insertion consistently decreased stiffness in all directions of motion. This is contrary to the results of Puttlitz (2), which reported a reduced range of motion (i.e. increased stiffness) for some motions using moment-controlled testing. This decrease in stiffness could not be explained by changes in anatomy or tissue properties between specimens, as each stapled motion segment was compared with its own intact state. Addition of the staple would intuitively be expected to increase motion segment stiffness, however we suggest that the staple prongs may cause sufficient disruption to the vertebral bodies and endplates to slightly reduce overall stiffness. Hence, growth modulation may be achieved through physical disruption of the endplate, rather than static mechanical stress. Further research is planned to investigate the proportion of load carried by the staple during spinal movement and the anatomical effect of the staple on the physis. In conclusion, anterior vertebral stapling causes a slight but significant decrease in the stiffness of treated motion segments