Advertisement for orthosearch.org.uk
Results 1 - 20 of 24
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 646 - 655
1 Jul 2024
Longo UG Gulotta LV De Salvatore S Lalli A Bandini B Giannarelli D Denaro V

Aims

Proximal humeral fractures are the third most common fracture among the elderly. Complications associated with fixation include screw perforation, varus collapse, and avascular necrosis of the humeral head. To address these challenges, various augmentation techniques to increase medial column support have been developed. There are currently no recent studies that definitively establish the superiority of augmented fixation over non-augmented implants in the surgical treatment of proximal humeral fractures. The aim of this systematic review and meta-analysis was to compare the outcomes of patients who underwent locking-plate fixation with cement augmentation or bone-graft augmentation versus those who underwent locking-plate fixation without augmentation for proximal humeral fractures.

Methods

The search was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Articles involving patients with complex proximal humeral fractures treated using open reduction with locking-plate fixation, with or without augmentation, were considered. A meta-analysis of comparative studies comparing locking-plate fixation with cement augmentation or with bone-graft augmentation versus locking-plate fixation without augmentation was performed.


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 613 - 622
1 Jun 2024
Shen J Wei Z Wu H Wang X Wang S Wang G Luo F Xie Z

Aims

The aim of the present study was to assess the outcomes of the induced membrane technique (IMT) for the management of infected segmental bone defects, and to analyze predictive factors associated with unfavourable outcomes.

Methods

Between May 2012 and December 2020, 203 patients with infected segmental bone defects treated with the IMT were enrolled. The digital medical records of these patients were retrospectively analyzed. Factors associated with unfavourable outcomes were identified through logistic regression analysis.


Bone & Joint Research
Vol. 13, Issue 3 | Pages 127 - 135
22 Mar 2024
Puetzler J Vallejo Diaz A Gosheger G Schulze M Arens D Zeiter S Siverino C Richards RG Moriarty TF

Aims

Fracture-related infection (FRI) is commonly classified based on the time of onset of symptoms. Early infections (< two weeks) are treated with debridement, antibiotics, and implant retention (DAIR). For late infections (> ten weeks), guidelines recommend implant removal due to tolerant biofilms. For delayed infections (two to ten weeks), recommendations are unclear. In this study we compared infection clearance and bone healing in early and delayed FRI treated with DAIR in a rabbit model.

Methods

Staphylococcus aureus was inoculated into a humeral osteotomy in 17 rabbits after plate osteosynthesis. Infection developed for one week (early group, n = 6) or four weeks (delayed group, n = 6) before DAIR (systemic antibiotics: two weeks, nafcillin + rifampin; four weeks, levofloxacin + rifampin). A control group (n = 5) received revision surgery after four weeks without antibiotics. Bacteriology of humerus, soft-tissue, and implants was performed seven weeks after revision surgery. Bone healing was assessed using a modified radiological union scale in tibial fractures (mRUST).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 107 - 107
2 Jan 2024
Pastor T Zderic I Berk T Souleiman F Vögelin E Beeres F Gueorguiev B Pastor T
Full Access

Recently, a new generation of superior clavicle plates was developed featuring the variable-angle locking technology for enhanced screw positioning and optimized plate-to-bone fit design. On the other hand, mini-fragment plates used in dual plating mode have demonstrated promising clinical results. However, these two bone-implant constructs have not been investigated biomechanically in a human cadaveric model. Therefore, the aim of the current study was to compare the biomechanical competence of single superior plating using the new generation plate versus dual plating with low-profile mini-fragment plates. Sixteen paired human cadaveric clavicles were assigned pairwise to two groups for instrumentation with either a 2.7 mm Variable Angle Locking Compression Plate placed superiorly (Group 1), or with one 2.5 mm anterior plate combined with one 2.0 mm superior matrix mandible plate (Group 2). An unstable clavicle shaft fracture AO/OTA15.2C was simulated by means of a 5 mm osteotomy gap. All specimens were cyclically tested to failure under craniocaudal cantilever bending, superimposed with bidirectional torsion around the shaft axis and monitored via motion tracking. Initial stiffness was significantly higher in Group 2 (9.28±4.40 N/mm) compared to Group 1 (3.68±1.08 N/mm), p=0.003. The amplitudes of interfragmentary motions in terms of craniocaudal and shear displacement, fracture gap opening and torsion were significantly bigger over the course of 12500 cycles in Group 1 compared to Group 2; p≤0.038. Cycles to 2 mm shear displacement were significantly lower in Group 1 (22792±4346) compared to Group 2 (27437±1877), p=0.047. From a biomechanical perspective, low-profile 2.5/2.0 dual plates demonstrated significantly higher initial stiffness, less interfragmentary movements, and higher resistance to failure compared to 2.7 single superior variable-angle locking plates and can therefore be considered as a useful alternative for diaphyseal clavicle fracture fixation especially in unstable fracture configurations


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 83 - 83
10 Feb 2023
Lee H Lewis D Balogh Z
Full Access

Distal femur fractures (DFF) are common, especially in the elderly and high energy trauma patients. Lateral locked osteosynthesis constructs have been widely used, however non-union and implant failures are not uncommon. Recent literature advocates for the liberal use of supplemental medial plating to augment lateral locked constructs. However, there is a lack of proprietary medial plate options, with some authors supporting the use of repurposing expensive anatomic pre-contoured plates. The aim of this study was to investigate the feasibility of a readily available cost-effective medial implant option. A retrospective analysis from January 2014 to June 2022 was performed on DFF (primary or revision) managed with supplemental medial plating with a Large Fragment Locking Compression Plate (LCP) T-Plate (~$240 AUD) via a medial sub-vastus approach. The T-plate was contoured and placed superior to the medial condyle. A combination of 4.5mm cortical, 5mm locking and/or 6.5mm cancellous screws were used, with oblique screw trajectories towards the distal lateral cortex of the lateral condyle. All extra-articular fractures and revision fixation cases were allowed to weight bear immediately. The primary outcome was union rate. This technique was utilised on sixteen patients; 3 acute, 13 revisions; mean age 52 years (range 16-85), 81% male, 5 open fractures. The union rate was 100%, with a median time to union of 29 weeks (IQR 18-46). The mean follow-up was 15 months. There were two complications: a deep infection requiring two debridements and a prominent screw requiring removal. The mean range of motion was 1–108. o. . Supplemental medial plating of DFF with a Large Fragment LCP T-Plate is a feasible, safe, and economical option for both acute fixation and revisions. Further validation on a larger scale is warranted, along with considerations to developing a specific implant in line with these principles


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 902 - 908
1 Jul 2022
Hsu P Lee C Lin S Kuo KN Wu K Wang T

Aims

The aim of this study was to compare outcomes of guided growth and varus osteotomy in treating Kalamchi type II avascular necrosis (AVN) after open reduction and Pemberton acetabuloplasty for developmental dysplasia of the hip (DDH).

Methods

This retrospective study reviewed patients undergoing guided growth or varus osteotomy for Kalamchi type II AVN between September 2009 and January 2019. All children who had undergone open reduction and Pemberton acetabuloplasty for DDH with a minimum two-year follow-up were enrolled in the study. Demographic and radiological data, which included the head-shaft angle (HSA), neck-shaft angle (NSA), articulotrochanteric distance (ATD), Sharp angle (SA), and lateral centre-edge angle (LCEA) at baseline, two years, and at the extended follow-up, were compared. Revision rates were evaluated. Clinical outcomes using the Harris Hip Score were assessed two years postoperatively.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 69 - 69
1 Nov 2021
Pastor T Zderic I Richards G Gueorguiev B Knobe M
Full Access

Introduction and Objective. Distal femoral fractures are commonly treated with a straight plate fixed to the lateral aspects of both proximal and distal fragments. However, the lateral approach may not always be desirable due to persisting soft-tissue or additional vascular injury necessitating a medial approach. These problems may be overcome by pre-contouring the plate in helically shaped fashion, allowing its distal part to be fixed to the medial aspect of the femoral condyle. The objective of this study was to investigate the biomechanical competence of medial femoral helical plating versus conventional straight lateral plating in an artificial distal femoral fracture model. Materials and Methods. Twelve left artificial femora were instrumented with a 15-hole Locking Compression Plate – Distal Femur (LCP-DF) plate, using either conventional lateral plating technique with the plate left non-contoured, or the medial helical plating technique by pre-contouring the plate to a 180° helical shape and fixing its distal end to the medial femoral condyle (n=6). An unstable extraarticular distal femoral fracture was subsequently simulated by means of an osteotomy gap. All specimens were tested under quasi-static and progressively increasing cyclic axial und torsional loading until failure. Interfragmentary movements were monitored by means of optical motion tracking. Results. Initial axial stiffness was significantly higher for helical (185.6±50.1 N/mm) versus straight (56.0±14.4) plating, p<0.01. However, initial torsional stiffness in internal and external rotation remained not significantly different between the two fixation techniques (helical plating:1.59±0.17 Nm/° and 1.52±0.13 Nm/°; straight plating: 1.50±0.12 Nm/° and 1.43±0.13Nm/°), p≥0.21. Helical plating was associated with significantly higher initial interfragmentary movements under 500 N static compression compared to straight plating in terms of flexion (2.76±1.02° versus 0.87±0.77°) and shear displacement under 6 Nm static rotation in internal (1.23±0.28° versus 0.40±0.42°) and external (1.21±0.40° versus 0.57±0.33°) rotation, p≤0.01. In addition, helical plating demonstrated significantly lower initial varus/valgus deformation than straight plating (4.08±1.49° versus 6.60±0.47°), p<0.01. Within the first 10000 cycles of dynamic loading, helical plating revealed significantly bigger flexural movements and significantly lower varus/valgus deformation versus straight plating, p=0.02. No significant differences were observed between the two fixation techniques in terms of axial and shear displacement, p≥0.76. Cycles to failure was significantly higher for helical plating (13752±1518) compared to straight plating (9727±836), p<0.01. Conclusions. Although helical plating using a pre-contoured LCP-DF was associated with higher shear and flexion movements, it demonstrated improved initial axial stability and resistance against varus/valgus deformation compared to straight lateral plating. Moreover, helical plate constructs demonstrated significantly improved endurance to failure, which may be attributed to the less progressively increasing lever bending moment arm inherent to this novel fixation technique. From a biomechanical perspective, helical plating may be considered as a valid alternative fixation technique to standard straight lateral plating of unstable distal femoral fractures


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 24 - 24
1 Nov 2021
Gueorguiev B Zderic I Pastor T Gehweiler D Richards G Knobe M
Full Access

Introduction and Objective. Plating of geriatric distal femoral fractures with Locking Compression Plate Distal Femur (LCP–DF) often requires augmentation with a supplemental medial plate to achieve sufficient stability allowing early mobilization. However, medial vital structures may be impaired by supplemental medial plating using a straight plate. Therefore, a helically shaped medial plate may be used to avoid damage of these structures. Aim of the current study was to investigate the biomechanical competence of augmented LCP–DF plating using a supplemental straight versus helically shaped medial plate. Materials and Methods. Ten pairs of human cadaveric femora with poor bone quality were assigned pairwise for instrumentation using a lateral anatomical 15-hole LCP–DF combined with a medial 14-hole LCP, the latter being either straight or manually pre-contoured to a 90-degree helical shape. An unstable distal femoral fracture AO/OTA 33–A3 was simulated by means of osteotomies. All specimens were biomechanically tested under non-destructive quasi-static and destructive progressively increasing combined cyclic axial and torsional loading in internal rotation, with monitoring by means of optical motion tracking. Results. Initial axial stiffness and torsional stiffness in internal and external rotation for straight double plating (548.1 ± 134.2 N/mm, 2.69 ± 0.52 Nm/° and 2.69 ± 0.50 Nm/°) was significantly higher versus helical double plating (442.9 ± 133.7 N/mm, 2.07 ± 0.32 Nm/° and 2.16 ± 0.22 Nm/°), p≤0.04. Initial interfragmentary axial displacement and flexural rotation under 500 N static loading were significantly smaller for straight plating (0.11 ± 0.14 mm and 0.21 ± 0.10°) versus helical plating (0.31 ± 0.14 mm and 0.68 ± 0.16°), p<0.01. However, initial varus deformation under this loading remained not significantly different between the two fixation methods (straight: 0.57 ± 0.23°, helical: 0.75 ± 0.34°), p=0.08. During dynamic loading, within the course of the first 4000 cycles the movements of the distal fragment in flexion were significantly bigger for helical over straight plating (1.03 ± 0.33° versus 0.40 ± 0.20°), p<0.01. However, no significant differences were observed between the two fixation methods in terms of varus, internal rotation, axial and shear displacements at the fracture site, and number of cycles to failure. Conclusions. Augmented lateral plating of unstable distal femoral fractures with use of supplemental helically shaped medial plate was associated with more elastic bone-implant construct behavior under static and dynamic loading compared to straight double plating. Both fixation methods resulted in comparable number of cycles to failure. From a biomechanical perspective, the more elastic helical double plating may be considered as useful alternative to straight plating, potentially reducing stress risers at the distal bone-implant interface due to its ameliorated damping capacities


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1222 - 1230
1 Jul 2021
Slullitel PA Garcia-Barreiro GG Oñativia JI Zanotti G Comba F Piccaluga F Buttaro MA

Aims

We aimed to compare the implant survival, complications, readmissions, and mortality of Vancouver B2 periprosthetic femoral fractures (PFFs) treated with internal fixation with that of B1 PFFs treated with internal fixation and B2 fractures treated with revision arthroplasty.

Methods

We retrospectively reviewed the data of 112 PFFs, of which 47 (42%) B1 and 27 (24%) B2 PFFs were treated with internal fixation, whereas 38 (34%) B2 fractures underwent revision arthroplasty. Decision to perform internal fixation for B2 PFFs was based on specific radiological (polished femoral components, intact bone-cement interface) and clinical criteria (low-demand patient). Median follow-up was 36.4 months (24 to 60). Implant survival and mortality over time were estimated with the Kaplan-Meier method. Adverse events (measured with a modified Dindo-Clavien classification) and 90-day readmissions were additionally compared between groups.


Bone & Joint Research
Vol. 7, Issue 11 | Pages 609 - 619
1 Nov 2018
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Objectives

Prosthetic joint infection (PJI) is a devastating complication following total joint arthroplasty. Non-contact induction heating of metal implants is a new and emerging treatment for PJI. However, there may be concerns for potential tissue necrosis. It is thought that segmental induction heating can be used to control the thermal dose and to limit collateral thermal injury to the bone and surrounding tissues. The purpose of this study was to determine the thermal dose, for commonly used metal implants in orthopaedic surgery, at various distances from the heating centre (HC).

Methods

Commonly used metal orthopaedic implants (hip stem, intramedullary nail, and locking compression plate (LCP)) were heated segmentally using an induction heater. The thermal dose was expressed in cumulative equivalent minutes at 43°C (CEM43) and measured with a thermal camera at several different distances from the HC. A value of 16 CEM43 was used as the threshold for thermal damage in bone.


The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1399 - 1405
1 Oct 2016
Rohilla R Wadhwani J Devgan A Singh R Khanna M

Aims

This is a prospective randomised study which compares the radiological and functional outcomes of ring and rail fixators in patients with an infected gap (> 3 cm) nonunion of the tibia.

Patients and Methods

Between May 2008 and February 2013, 70 patients were treated at our Institute for a posttraumatic osseocutaneous defect of the tibia measuring at least 3 cm. These were randomised into two groups of 35 patients using the lottery method. Group I patients were treated with a ring fixator and group II patients with a rail fixator. The mean age was 33.2 years (18 to 64) in group I and 29.3 years (18 to 65) in group II. The mean bone gap was 5.84 cm in group I and 5.78 cm in group II.

The mean followup was 33.8 months in group I and 32.6 months in group II. Bone and functional results were assessed using the classification of the Association for the Study and Application of the Method of Ilizarov (ASAMI). Functional results were also assessed at six months using the short musculoskeletal functional assessment (SMFA) score.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 130 - 130
1 Jul 2014
Schneider K Zderic I Gueorguiev B Richards R Nork S
Full Access

Summary. Biomechanically, a 2° screw deviation from the nominal axis in the PFLCP leads to significantly earlier implant failure. Screw deviation relies on a technical error on insertion, but in our opinion cannot be controlled intraoperatively with the existing instrumentation devices. Background. Several cases of clinical failure have been reported for the Proximal Femoral Locking Compression Plate (PFLCP). The current study was designed to investigate the failure mode and to explore biomechanically the underlying mechanism. Specifically, the study sought to determine if the observed failure was due to technical error on insertion or due to implant design. Methods. To exclude patient and fracture type related factors, an abstract foam block model simulating an unstable pertrochanteric fracture was created for three study groups with six specimens each (n=6). Group 1 was properly instrumented according to the manufacturer's guidelines. In Group 2 and 3, the first or second screw was placed in a posterior or anterior off-axis orientation by 2° measured in the transversal plane, respectively. Each construct was tested cyclically until failure using a test setup and protocol simulating complex axial and torsional loading. Radiographs were taken prior to and after the tests. Force, number of cycles and failure mode were compared. Results. The 2° screw deviation from the nominal axis led to significantly earlier construct failure in Group 2 and 3. The failure mode consisted of loosening of the off-axis screw due to disengagement with the plate, resulting in loss of construct stiffness and varus collapse of the fracture. Conclusions. In our biomechanical test setup, a screw deviation of only 2° from the nominal axis consistently led to the failure mode observed clinically. In our opinion, screw deviation mostly relies on technical error on insertion. But, proper screw insertion may be difficult or impossible with the existing instrumentation devices, especially as it cannot be controlled or guaranteed intraoperatively


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 6 - 6
1 Sep 2012
Upadhyay P Beazley J Dunbar M Costa M
Full Access

Introduction. Locking compression plate (LCP) fixation is an established method of treatment of distal third tibial fractures. No biomechanical data exists in the literature regarding their use. Additionally no data exists on the biomechanical advantage of locking screw fixation over non-locking screw fixation for these fractures. In this study the axial and torsional stiffness, axial load to failure and fatigue performance of a 3.5 mm LCP medial distal tibia Synthes plate was evaluated for the stabilisation of distal third tibial fractures. Additionally the performance of the plate in uni and bicortical locked mode as well as non-locked mode was evaluated. Methods. A standardized oblique fracture pattern was created in the tibial metaphysis of 3rd generation composite tibias, 40 mm from the distal end of the tibia (AO 43-A2.3). A 10mm fracture gap was used to model a comminuted metaphyseal fracture. A 3.5 mm medial distal tibia LCP was applied with bi or unicortical locking or bicortical non-locking screws to 5 tibias respectively. All the bio-mechanical tests were performed on a Bose 3510 Electroforce material testing machine. A ramp to load, loading profile was used to determine the static axial and torsional performance of the construct. Fatigue testing simulated a 6 week gradual weight bearing régime with the load increasing every two weeks by 400N until either 250,000 cycles were completed or the construct failed. Results. The non-locked plate demonstrated a significantly higher load to failure than both the bicortical and unicortical locked plates, 683N vs. 575N vs. 483N respectively(p<0.01). The non locked plate also demonstrated significantly higher mean axial stiffness than the bicortical locked plate and unicortical locked plate 632±13 N/mm, 337±12N/mm and 266±6 N/mm respectively (p <0.01). The non locked plate demonstrated the highest torsional stiffness followed by the bi and unicortical locking plates 1.16 ±.08 Nmm vs. 0.79 ± .06 Nmm vs.0.40 ± 0.02 Nmm respectively (p < 0.01). The non locked plate demonstrated higher endurance than the bi and unicortical locking plates over a 6 week simulated fatigue cycle with 1.75mm, 2.10mm and 2.3mm residual displacement at 1600N respectively (p < 0.01). Discussion. This is the first study that has examined the biomechanical properties of the LCP when used for distal third tibial fractures. A review of the literature suggests LCPs outperform dynamic compression plates in osteoporotic bone but demonstrates no clear biomechanical advantage in using a locking construct in non-osteoporotic bone. In our study the non locked construct outperformed the locked constructs in all parameters assessed. We conclude there is no advantage in using a locking construct for distal third tibial fractures in good quality bone


Bone & Joint Research
Vol. 1, Issue 6 | Pages 111 - 117
1 Jun 2012
von Recum J Matschke S Jupiter JB Ring D Souer J Huber M Audigé L

Objectives

To investigate the differences of open reduction and internal fixation (ORIF) of complex AO Type C distal radius fractures between two different models of a single implant type.

Methods

A total of 136 patients who received either a 2.4 mm (n = 61) or 3.5 mm (n = 75) distal radius locking compression plate (LCP DR) using a volar approach were followed over two years. The main outcome measurements included motion, grip strength, pain, and the scores of Gartland and Werley, the Short-Form 36 (SF-36) and the Disabilities of the Arm, Shoulder, and Hand (DASH). Differences between the treatment groups were evaluated using regression analysis and the likelihood ratio test with significance based on the Bonferroni corrected p-value of < 0.003.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 100 - 100
1 May 2011
Doebele S Horn C Eichhorn S Lucke M Koch R Stöckle U
Full Access

Introduction: Standard treatment for distal tibia fractures is the fixation with locking compression plates. Locking plate fixation has revolutionized fracture treatment in the last decade and may be ideally suited for a bridging plate osteosynthesis. This technique allows some controlled axial fracture motion, what essential for secondary bone healing is. A disadvantage of the locking plate technique seems to be an unsymmetrical micro motion along the fracture gap. The micromotion at the far cortex side is much larger than at the near cortex side (near the plate). It is supposed to be that the fracture movement on the near cortex is too small. To increase the motion at the near cortex side a new kind of screws has been developed. In this study we examined the micromotion using normal locking head screws versus the new dynamic locking head screws. Materials and Methods: A simplified fracture model was created by connecting 2 plastic cylinders (POM C, EModul: 3.1GPa) with a standard 11-holes Locking Compression Plate (Synthes). The fracturegap (between the two cylinders) amounted 3mm. Three kinds of fracture models were constructed: The model of a transverse fracture, an oblique fracture and a spiral fracture. An axial load from 0N up to 200N was applied with a testing machine (Zwick). The motion of the fracture model was measured in three dimensions using the optical measurement system PONTOS 5M (GOM, Braunschweig, Germany). The accuracy of the optical measurement system was about 5 micrometers. Results: A total of 72 measurements were compared. Using the new screw, axial stiffness was decreased for 16% and micromotion was up to 200 μm higher in comparison to the old screw. Discussion: Using the new dynamic locking head screw it’s possible to increase interfragmentary motion up to 200μm on the near cortex side (plate side)


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1424 - 1430
1 Nov 2009
Corten K Vanrykel F Bellemans J Frederix PR Simon J Broos PLO

The use of plate-and-cable constructs to treat periprosthetic fractures around a well-fixed femoral component in total hip replacements has been reported to have high rates of failure. Our aim was to evaluate the results of a surgical treatment algorithm to use these lateral constructs reliably in Vancouver type-B1 and type-C fractures. The joint was dislocated and the stability of the femoral component was meticulously evaluated in 45 type-B1 fractures. This led to the identification of nine (20%) unstable components. The fracture was considered to be suitable for single plate-and-cable fixation by a direct reduction technique if the integrity of the medial cortex could be restored.

Union was achieved in 29 of 30 fractures (97%) at a mean of 6.4 months (3 to 30) in 29 type-B1 and five type-C fractures. Three patients developed an infection and one construct failed.

Using this algorithm plate-and-cable constructs can be used safely, but indirect reduction with minimal soft-tissue damage could lead to shorter times to union and lower rates of complications.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 472 - 472
1 Sep 2009
Buijze G Blankevoort L Kloen P
Full Access

New concepts in plate fixation have led to an evolution in plate design for olecranon fractures. The purpose of this study was. to compare the stiffness and strength of a contoured Locking Compression Plate (LCP) with a conventional plating method (one-third tubular plate) in a cadaveric comminuted olecranon fracture model with standardized osteotomy, and. to evaluate the LCP fixation method in a prospectively included group of patients with complex olecranon fractures using validated outcome scores. In the biomechanical study, five matched pairs of cadaveric elbows were randomly assigned for fixation by either LCP or a conventional plating method. Specimens were mounted to a custom-made testing bench and subjected to cyclic loading until failure occurred while measuring gapping at the osteotomy site. In the clinical study, twenty-one patients treated with LCP for complex olecranon fractures had a mean follow up of 20 months (3–39 months) and functional and patient rated outcome were evaluated. In the biomechanical study, there was no significant difference in fixation stiffness and strength between one third tubular plating and LCP (p > 0.05). In the clinical study, the mean time to union of the fracture was 6 months (2–28 months). According to the Mayo Elbow Performance Index (MEPI) most patients had a good or excellent outcome. No patients reported difficulty with activities of daily living. Physical capacity showed minimal loss of stability and strength. Six patients had their hardware removed. Technical ease of application and advantageous features of the LCP -such as unicortical screw fixation and improved holding power in osteopenic bone- make it a good alternative implant for comminuted olecranon fractures


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 356 - 357
1 May 2009
Lacey EK Evans N Thomas G
Full Access

Objective: To determine the success of 20 cases treated with TomoFix high tibial medial opening wedge osteotomy.

Study design: Retrospective review of 20 cases with 6 months of follow up including; indications for treatment, surgical technique, results, complications and patient satisfaction.

Background: High Tibial Osteotomy is an established technique for the treatment of unicompartmental osteoarthritis of the varus malaligned knee. Corrections are usually achieved by closed wedge osteotomy from a lateral exposure. This technique has associated risks of; peroneal nerve injuries, instability of the osteotomy and secondary loss of correction. Open wedge osteotomy of the medial side eliminates these risks. TomoFix allows stable fixation of the osteotomy without the need to fill the osteotomy gap with bone grafts.

Results: Full weight bearing after 6 weeks. No implant failures, delayed unions, nerve injuries or compartment syndromes. Complications included 1 infection, 1 over correction and 1 with metalwork pain.

Conclusions: TomoFix allows for early mobilisation and avoids loss of correction with reduced risk of nerve injuries and compartment syndrome.

Relevance: The surgical technique needs careful attention. Disorders of normal bone healing and inadequate axial correction may lead to failure of treatment. Early rehabilitation is possible and long term follow up is necessary.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 323 - 323
1 May 2006
Faraj S Theis J
Full Access

Locking compression plate is part of a new plate generation requiring an adapted surgical technique and new thinking about commonly used concepts of internal fixation using plates. They offer a number of advantages in fracture fixation combining angular stability through the use of locking screws with traditional fixation techniques. This makes the implant suitable for poor bone stock and for fractures in metaphyseal areas. However the system is complex and cases of plate loosening and plate breakage reported by many authors recently, many of these authors believe it is attributed to the choice of inappropriate plate and/or fixation technique rather than to the features of locking compression plate system. We are reporting 2 cases of plate breakage after using it to fix diaphyseal femoral shaft fractures; in each case we discuss the pitfalls in the fixation method. The locking plate manual did not highlight the important pitfalls, which was published later on in the literature as guidelines for their clinical application. Careful and detailed attention to the biomechanical principles of locking compression is crucial to the success of implant in fixing fractures in diaphyseal areas


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 337 - 337
1 May 2006
Lebel D Gortzak Y Rath E Atar D Korngreen A
Full Access

Background: Displaced proximal humeral fractures (PHF) remain a challenge to the orthopedic surgeon. Conservative treatment yield poor results in the majority of these fractures. Surgical treatment, although preferable, lacks the proper exposure and fixation technique.

The locking compression plate (LCP), which is inserted in a minimal invasive technique, utilizing an anterolateral approach to the proximal humerus, allows adequate reduction and fixation, while minimizing the risk for complications derived from extensive exposure and poor fixation.

Methods: All patients admitted to our department with a complicated PHF between Jan 2004 and May 2005 were included. After obtaining informed consent, open reduction and internal fixation was performed through an anterolateral minimal invasive approach. After exposure and reduction with or without acromioplasty and rotator cuff repair, the fracture was fixated with a LCP 3.5mm. Patients were encouraged to perform pendular movements on the first post-operative day.

The patients were followed closely beginning 2 weeks post-operatively and afterwards on a bi-monthly basis. Immediate complications, radiographic and functional outcome were noted.

Results: 22 patients have been treated according to the treatment protocol during the study period. Minimal follow up of three months is available. A single complication was noted (deep wound infection which necessitated hardware removal). No nerve injury or hardware failures were noted.

Functional outcome was good, patients regained 120°±25 of flexion, 112°±27 of abduction and 17°±8 of external rotation.

Conclusions: The anterolateral approach to the shoulder and fixation with a LCP plate is a safe technique in our hospital. Rigid stabilization allows for early shoulder activation which results in a good range of motion and functional outcome on short-term follow up. Further study and long-term follow up are needed to validate this technique in treating complex proximal humerus fractures.