The December 2024 Wrist & Hand Roundup. 360. looks at: Variability in thumb ulnar collateral ligament rupture management across the UK: survey insights; Identifying five distinct hand osteoarthritis pain phenotypes highlights the impact of biopsychosocial factors; Long-term outcomes of MAÏA TMC joint prosthesis for osteoarthritis: a possible alternative to trapeziectomy; Diagnostic and management strategies for malignant melanoma of the hand; Early versus delayed surgery for distal radius fractures: comparable outcomes but higher complications in delayed treatment; Perioperative anticoagulant and antiplatelet use does not increase complications in wide-awake hand surgery; Variability in treatment of metacarpal shaft fractures highlights need for standardized care;
Aims. Although
This edition of Cochrane Corner looks at some of the work published by the Cochrane Collaboration, covering interventions for treating distal femur fractures in adults; ultrasound and shockwave therapy for acute fractures in adults; and local corticosteroid injection versus placebo for carpal tunnel syndrome.
Aims. To evaluate whether
Introduction. Articular cartilage injuries have a limited potential to heal and, over time, may lead to osteoarthritis, an inflammatory and degenerative joint disease associated with activity-related pain, swelling, and impaired mobility. Regeneration and restoration of the joint tissue functionality remain unmet challenges. Stem cell-based tissue engineering is a promising paradigm to treat cartilage degeneration. In this context, hydrogels have emerged as promising biomaterials, due to their biocompatibility, ability to mimic the tissue extracellular matrix and excellent permeability. Different stimulation strategies have been investigated to guarantee proper conditions for mesenchymal stem cell differentiation into chondrocytes, including growth factors, cell-cell interactions, and biomaterials. An interesting tool to facilitate chondrogenesis is external ultrasound stimulation. In particular,
Introduction and Objective. Nonunion is incomplete healing of fracture and fracture that lacks potential to heal without further intervention. Nonunion commonly presents with persistent pain, swelling, or instability. Those symptoms affect patient quality of life. It is known that using low intensity pulsed ultrasound (LIPUS) for fresh fractures promotes healing. However, effectiveness of LIPUS for nonunion is still controversial. If LIPUS is prove to be effective for healing nonunion, it can potentially provide an alternative to surgery. In addition, we can reduce costs by treating nonunion with LIPUS than performing revision surgery. Materials and Methods. The two authors carried out a systematic search of PubMed, Ovid MEDLINE, and the Cochrane Library. Meta-analysis of healing rate in nonunion and delayed union patients who underwent LIPUS was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) instruction method using a random effects model. Results. The initial search identified 652 articles. Of these, 541 were excluded on the basis of the title because they were either a review paper or covered an unrelated topic. The abstracts of the remaining 111 articles were examined further. That review resulted in a sample of 12 articles. We performed a meta-analysis with a random effects model using Open Meta Analyst software. The result of pooled effect size of healing rate was 73.4% (95%CI: 65.3–81.6%). Due to the fact that nonunion lacks potential to heal without further intervention, we suggest that the therapeutic effect of 73.4% from LIPUS is sufficiently effective. As far as we know, there are no trials comparing the therapeutic effectiveness of surgery and LIPUS, so it cannot be said which is more advantageous. However, the healing rate of revision surgery was reported between 68–96%; therefore, our result is within that range. Thus, if surgery is difficult due to complications, we can recommend LIPUS. Conclusions. Meta-analysis of healing rate of nonunion treated by
Bone demonstrates good healing capacity, with a variety of strategies being utilized to enhance this healing. One potential strategy that has been suggested is the use of stem cells to accelerate healing. The following databases were searched: MEDLINE, CENTRAL, EMBASE, Cochrane Database of Systematic Reviews, WHO-ICTRP, ClinicalTrials.gov, as well as reference checking of included studies. The inclusion criteria for the study were: population (any adults who have sustained a fracture, not including those with pre-existing bone defects); intervention (use of stem cells from any source in the fracture site by any mechanism); and control (fracture healing without the use of stem cells). Studies without a comparator were also included. The outcome was any reported outcomes. The study design was randomized controlled trials, non-randomized or observational studies, and case series.Aims
Methods
Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of fracture healing and de novo bone formation in situations such as nonunion. Cite this article:
The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management. A review of relevant literature was undertaken, including articles indexed in PubMed with keywords “ultrasound” or “sonography” combined with “diagnosis”, “fracture healing”, “impaired fracture healing”, “nonunion”, “microbiology”, and “fracture-related infection”.Objectives
Methods
Background. Fractures of the metatarsal bones are the most frequent fracture of the foot. Up to 70% involve the fifth metatarsal bone, of which approximately eighty percent are located proximally.
The success of anterior cruciate ligament reconstruction (ACLR)
depends on osseointegration at the graft-tunnel interface and intra-articular
ligamentization. Our aim was to conduct a systematic review of clinical
and preclinical studies that evaluated biological augmentation of
graft healing in ACLR. In all, 1879 studies were identified across three databases.
Following assessment against strict criteria, 112 studies were included
(20 clinical studies; 92 animal studies). Aims
Materials and Methods
Aims. This 501-patient, multi-centre, randomised controlled trial sought
to establish the effect of