Advertisement for orthosearch.org.uk
Results 1 - 20 of 41
Results per page:
Bone & Joint 360
Vol. 13, Issue 6 | Pages 26 - 29
1 Dec 2024

The December 2024 Wrist & Hand Roundup. 360. looks at: Variability in thumb ulnar collateral ligament rupture management across the UK: survey insights; Identifying five distinct hand osteoarthritis pain phenotypes highlights the impact of biopsychosocial factors; Long-term outcomes of MAÏA TMC joint prosthesis for osteoarthritis: a possible alternative to trapeziectomy; Diagnostic and management strategies for malignant melanoma of the hand; Early versus delayed surgery for distal radius fractures: comparable outcomes but higher complications in delayed treatment; Perioperative anticoagulant and antiplatelet use does not increase complications in wide-awake hand surgery; Variability in treatment of metacarpal shaft fractures highlights need for standardized care; Low-intensity pulsed ultrasound ineffective in reducing time to union for scaphoid nonunion post-surgery


Bone & Joint Research
Vol. 13, Issue 7 | Pages 332 - 341
5 Jul 2024
Wang T Yang C Li G Wang Y Ji B Chen Y Zhou H Cao L

Aims. Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI). Methods. A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR. Results. The group with LIPUS and 0.35% PI exhibited decreased levels of serum biochemical markers, improved weightbearing scores, reduced reactive bone changes, absence of viable bacteria, and decreased inflammation compared to the Control group. Despite the greater antibiofilm activity observed in the PI group compared to the LIPUS and saline group, none of the monotherapies were successful in preventing reactive bone changes or eliminating the infection. Conclusion. In the rat model of PJI treated with DAIR, LIPUS combined with 0.35% PI demonstrated stronger antibiofilm potential than monotherapy, without impairing any local soft-tissue. Cite this article: Bone Joint Res 2024;13(7):332–341


Bone & Joint 360
Vol. 12, Issue 3 | Pages 43 - 43
1 Jun 2023
Das A

This edition of Cochrane Corner looks at some of the work published by the Cochrane Collaboration, covering interventions for treating distal femur fractures in adults; ultrasound and shockwave therapy for acute fractures in adults; and local corticosteroid injection versus placebo for carpal tunnel syndrome.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 885 - 893
14 Nov 2022
Goshima K Sawaguchi T Horii T Shigemoto K Iwai S

Aims. To evaluate whether low-intensity pulsed ultrasound (LIPUS) accelerates bone healing at osteotomy sites and promotes functional recovery after open-wedge high tibial osteotomy (OWHTO). Methods. Overall, 90 patients who underwent OWHTO without bone grafting were enrolled in this nonrandomized retrospective study, and 45 patients treated with LIPUS were compared with 45 patients without LIPUS treatment in terms of bone healing and functional recovery postoperatively. Clinical evaluations, including the pain visual analogue scale (VAS) and Japanese Orthopaedic Association (JOA) score, were performed preoperatively as well as six weeks and three, six, and 12 months postoperatively. The progression rate of gap filling was evaluated using anteroposterior radiographs at six weeks and three, six, and 12 months postoperatively. Results. The pain VAS and JOA scores significantly improved after OWHTO in both groups. Although the LIPUS group had better pain scores at six weeks and three months postoperatively, there were no significant differences in JOA score between the groups. The lateral hinge united at six weeks postoperatively in 34 (75.6%) knees in the control group and in 33 (73.3%) knees in the LIPUS group. The progression rates of gap filling in the LIPUS group were 8.0%, 15.0%, 27.2%, and 46.0% at six weeks and three, six, and 12 months postoperatively, respectively, whereas in the control group at the same time points they were 7.7%, 15.2%, 26.3%, and 44.0%, respectively. There were no significant differences in the progression rate of gap filling between the groups. Conclusion. The present study demonstrated that LIPUS did not promote bone healing and functional recovery after OWHTO with a locking plate. The routine use of LIPUS after OWHTO was not recommended from the results of our study. Cite this article: Bone Jt Open 2022;3(11):885–893


Bone & Joint Research
Vol. 11, Issue 6 | Pages 409 - 412
22 Jun 2022
Tsang SJ Ferreira N Simpson AHRW


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 116 - 116
1 Nov 2021
Manferdini C Gabusi E Trucco D Dolzani P Saleh Y Cafarelli A Ricotti L Lisignoli G
Full Access

Introduction. Articular cartilage injuries have a limited potential to heal and, over time, may lead to osteoarthritis, an inflammatory and degenerative joint disease associated with activity-related pain, swelling, and impaired mobility. Regeneration and restoration of the joint tissue functionality remain unmet challenges. Stem cell-based tissue engineering is a promising paradigm to treat cartilage degeneration. In this context, hydrogels have emerged as promising biomaterials, due to their biocompatibility, ability to mimic the tissue extracellular matrix and excellent permeability. Different stimulation strategies have been investigated to guarantee proper conditions for mesenchymal stem cell differentiation into chondrocytes, including growth factors, cell-cell interactions, and biomaterials. An interesting tool to facilitate chondrogenesis is external ultrasound stimulation. In particular, low-intensity pulsed ultrasound (LIPUS) has been demonstrated to have a role in regulating the differentiation of adipose mesenchymal stromal cells (ASCs). However, chondrogenic differentiation of ASCs has been never associated to a precisely measured ultrasound dose. In this study, we aimed to investigate whether dose-controlled LIPUS is able to influence chondrogenic differentiation of ASCs embedded in a 3D hydrogel. Materials and Methods. Human adipose mesenchymal stromal cells at 2∗10. 6. cells/mL were embedded in a hydrogel ratio 1:2 (VitroGel RGD®) and exposed to LIPUS stimulation (frequency: 1 MHz, intensity: 250 mW/cm. 2. , duty cycle: 20%, pulse repetition frequency: 1 kHz, stimulation time: 5 min) in order to assess its influence on cell differentiation. Hydrogel-loaded ASCs were cultured and differentiated for 2, 7, 10 and 28 days. At each time point cell viability (Live&Dead), metabolic activity (Alamar Blue), cytotoxicity (LDH), gene expression (COL2, aggrecan, SOX9, and COL1), histology and immunohistochemistry (COL2, aggrecan, SOX9, and COL1) were evaluated respect to a non-stimulated control. Results. Histological analysis evidenced a uniform distribution of ASCs both at the periphery and at the center of the hydrogel. Live & Dead test evidenced that the encapsulated ASCs were viable, with no signs of cytotoxicity. We found that LIPUS induced chondrogenesis of ASCs embedded in the hydrogel, as demonstrated by increased expression of COL2, aggrecan and SOX9 genes and proteins, and decreased expression of COL1 respect to the non-stimulated control. Conclusions. These results suggest that the LIPUS treatment could be a valuable tool in cartilage tissue engineering, to push the differentiation of ASCs encapsulated in a 3D hydrogel


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 5 - 5
1 Nov 2021
Hara M Yamazaki K
Full Access

Introduction and Objective. Nonunion is incomplete healing of fracture and fracture that lacks potential to heal without further intervention. Nonunion commonly presents with persistent pain, swelling, or instability. Those symptoms affect patient quality of life. It is known that using low intensity pulsed ultrasound (LIPUS) for fresh fractures promotes healing. However, effectiveness of LIPUS for nonunion is still controversial. If LIPUS is prove to be effective for healing nonunion, it can potentially provide an alternative to surgery. In addition, we can reduce costs by treating nonunion with LIPUS than performing revision surgery. Materials and Methods. The two authors carried out a systematic search of PubMed, Ovid MEDLINE, and the Cochrane Library. Meta-analysis of healing rate in nonunion and delayed union patients who underwent LIPUS was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) instruction method using a random effects model. Results. The initial search identified 652 articles. Of these, 541 were excluded on the basis of the title because they were either a review paper or covered an unrelated topic. The abstracts of the remaining 111 articles were examined further. That review resulted in a sample of 12 articles. We performed a meta-analysis with a random effects model using Open Meta Analyst software. The result of pooled effect size of healing rate was 73.4% (95%CI: 65.3–81.6%). Due to the fact that nonunion lacks potential to heal without further intervention, we suggest that the therapeutic effect of 73.4% from LIPUS is sufficiently effective. As far as we know, there are no trials comparing the therapeutic effectiveness of surgery and LIPUS, so it cannot be said which is more advantageous. However, the healing rate of revision surgery was reported between 68–96%; therefore, our result is within that range. Thus, if surgery is difficult due to complications, we can recommend LIPUS. Conclusions. Meta-analysis of healing rate of nonunion treated by low-intensity pulsed ultrasound is 73.4%, which suggests sufficient therapeutic effectiveness. Furthermore, we can say that LIPUS may provide an alternative treatment for nonunion patients who cannot tolerate revision surgery due to complications


Bone & Joint Open
Vol. 1, Issue 10 | Pages 628 - 638
6 Oct 2020
Mott A Mitchell A McDaid C Harden M Grupping R Dean A Byrne A Doherty L Sharma H

Aims

Bone demonstrates good healing capacity, with a variety of strategies being utilized to enhance this healing. One potential strategy that has been suggested is the use of stem cells to accelerate healing.

Methods

The following databases were searched: MEDLINE, CENTRAL, EMBASE, Cochrane Database of Systematic Reviews, WHO-ICTRP, ClinicalTrials.gov, as well as reference checking of included studies. The inclusion criteria for the study were: population (any adults who have sustained a fracture, not including those with pre-existing bone defects); intervention (use of stem cells from any source in the fracture site by any mechanism); and control (fracture healing without the use of stem cells). Studies without a comparator were also included. The outcome was any reported outcomes. The study design was randomized controlled trials, non-randomized or observational studies, and case series.


Bone & Joint 360
Vol. 9, Issue 5 | Pages 24 - 28
1 Oct 2020


Bone & Joint Research
Vol. 9, Issue 6 | Pages 311 - 313
1 Jun 2020
Tsang SJ Morgan-Jones R Simpson AHRW


Bone & Joint 360
Vol. 9, Issue 2 | Pages 23 - 27
1 Apr 2020


Bone & Joint Research
Vol. 9, Issue 1 | Pages 1 - 14
1 Jan 2020
Stewart S Darwood A Masouros S Higgins C Ramasamy A

Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of fracture healing and de novo bone formation in situations such as nonunion.

Cite this article: Bone Joint Res 2019;9(1):1–14.


Bone & Joint Research
Vol. 8, Issue 7 | Pages 304 - 312
1 Jul 2019
Nicholson JA Tsang STJ MacGillivray TJ Perks F Simpson AHRW

Objectives

The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management.

Methods

A review of relevant literature was undertaken, including articles indexed in PubMed with keywords “ultrasound” or “sonography” combined with “diagnosis”, “fracture healing”, “impaired fracture healing”, “nonunion”, “microbiology”, and “fracture-related infection”.


Bone & Joint 360
Vol. 7, Issue 4 | Pages 19 - 22
1 Aug 2018


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 29 - 29
1 Apr 2018
Teoh KH Whitham R Hariharan K
Full Access

Background. Fractures of the metatarsal bones are the most frequent fracture of the foot. Up to 70% involve the fifth metatarsal bone, of which approximately eighty percent are located proximally. Low-intensity pulsed ultrasound (LIPUS) has been shown to be a useful adjunct in the treatment of delayed fractures and non unions. However, there is no study looking at the success rate of LIPUS in fifth metatarsal fracture delayed unions. Objectives. The aim of our study was to investigate the use of LIPUS treatment for delayed union of fifth metatarsal fractures. Study Design & Methods. A retrospective review of patients who were treated with LIPUS following a delayed union of fifth metatarsal fracture was conducted over a three-year period (2013 – 2015). Delayed union was defined as lack of clinical and radiological evidence of union, bony continuity or bone reaction at the fracture site if 3 months has elapsed from the initial injury. Results. There were thirty patients (9 males, 21 females) in our cohort. The average age was 39.3 years. Type 2 fractures made up 43% of our cohort. Twenty-seven (90%) patients went on to progress to union clinically and radiologically following LIPUS treatment. Smoking (p=0.014) and size of fracture gap (p=0.045) were predictive of non-union. Conclusions. This is the first study looking at the use of LIPUS in the treatment of delayed union of fifth metatarsal fractures. We report a success rate of 90%. There is a role in the use of LIPUS in delayed union of fifth metatarsal fractures and can serve as an adjunct prior to consideration of surgery


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 271 - 284
1 Mar 2018
Hexter AT Thangarajah T Blunn G Haddad FS

Aims

The success of anterior cruciate ligament reconstruction (ACLR) depends on osseointegration at the graft-tunnel interface and intra-articular ligamentization. Our aim was to conduct a systematic review of clinical and preclinical studies that evaluated biological augmentation of graft healing in ACLR.

Materials and Methods

In all, 1879 studies were identified across three databases. Following assessment against strict criteria, 112 studies were included (20 clinical studies; 92 animal studies).


Bone & Joint 360
Vol. 7, Issue 1 | Pages 27 - 30
1 Feb 2018


The Bone & Joint Journal
Vol. 99-B, Issue 11 | Pages 1526 - 1532
1 Nov 2017
Tarride JE Hopkins RB Blackhouse G Burke N Bhandari M Johal H Guyatt GH Busse JW

Aims. This 501-patient, multi-centre, randomised controlled trial sought to establish the effect of low-intensity, pulsed, ultrasound (LIPUS) on tibial shaft fractures managed with intramedullary nailing. We conducted an economic evaluation as part of this trial. Patients and Methods. Data for patients’ use of post-operative healthcare resources and time taken to return to work were collected and costed using publicly available sources. Health-related quality of life, assessed using the Health Utilities Index Mark-3 (HUI-3), was used to derive quality-adjusted life years (QALYs). Costs and QALYs were compared between LIPUS and control (a placebo device) from a payer and societal perspective using non-parametric bootstrapping. All costs are reported in 2015 Canadian dollars unless otherwise stated. Results. With a cost per device of $3,995, the mean cost was significantly higher for patients treated with LIPUS versus placebo from a payer (mean increase = $3647, 95% confidence interval (CI) $3244 to $4070; p < 0.001) or a societal perspective (mean increase = $3425, 95% CI $1568 to $5283; p < 0.001). LIPUS did not provide a significant benefit in terms of QALYs gained (mean difference = 0.023 QALYs, 95% CI -0.035 to 0.069; p = 0.474). Incremental cost-effectiveness ratios of LIPUS compared with placebo were $155 433/QALY from a payer perspective and $146 006/QALY from a societal perspective. Conclusion. At the current price, LIPUS is not cost-effective for fresh tibial fractures managed with intramedullary nailing. Cite this article: Bone Joint J 2017;99-B:1526–32


Bone & Joint 360
Vol. 6, Issue 5 | Pages 27 - 30
1 Oct 2017


Bone & Joint 360
Vol. 6, Issue 4 | Pages 25 - 29
1 Aug 2017