Aims. The involvement of long non-coding RNA (lncRNA) in bone marrow mesenchymal stem cell (MSC) osteogenic differentiation during osteoporosis (OP) development has attracted much attention. In this study, we aimed to disclose how LINC01089 functions in human mesenchymal stem cell (hMSC) osteogenic differentiation, and to study the mechanism by which LINC01089 regulates
Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application. In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.Aims
Methods
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment. Cite this article:
Introduction. Homogenous and consistent preparations of mesenchymal stem cells (MSCs) can be acquired by selecting them for integrin α10β1 (integrin a10-MSCs). Safety and efficacy of intra-articular injection of allogeneic integrin a10-MSCs were shown in two post-traumatic osteoarthritis horse studies. The current study investigated immunomodulatory capacities of human integrin a10-MSCs in vitro and their cell fait after intra-articular injection in rabbits. Method. The concentration of produced immunomodulatory factors was measured after licensing integrin a10-MSCs with pro-inflammatory cytokines. Suppression of T-cell proliferation was determined in co-cultures with carboxyfluorescein N-succinimidyl ester (CFSE) labelled human peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3/CD28 and measuring the CFSE intensity of CD4+ cells. Macrophage polarization was assessed in co-cultures with differentiated THP-1 cells stimulated with lipopolysaccharide and analysing the M2 macrophage cell surface markers CD163 and CD206. In vivo homing and regeneration were investigated by injecting superparamagnetic iron oxide nanoparticles conjugated with Rhodamine B-labeled human integrin a10-MSCs in rabbits with experimental osteochondral defects.
Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in
Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing environment. During the past 20 years, there has been an increased interest in the use of biologics to complement the healing environment in the shoulder, in order to improve rotator cuff healing and reduce the rate of recurrent tears. The aim of this review is to provide a summary of the current evidence for the use of forms of biological augmentation when repairing rotator cuff tears. Cite this article:
Introduction. Fusion represents an effective treatment option in patients affected by end-stage arthritis. To minimise the risk of non-union following fusion, biological preparations such as bone marrow aspirate concentrate (BMAC) are commonly used intra-operatively. Mechanotransduction represents an emerging field of research whereby physical stimuli can be used to modulate the behaviour and differentiation of cells. Blast waves (a subtype of shock waves) are one such physical stimulus. The aim of this study was to investigate whether the osteogenic potential of BMAC can be enhanced using a blast wave, and thus improve its efficacy in fusion surgery. Methods. Human BMAC samples were obtained from three healthy patients and exposed to a single blast wave (peak overpressure= 50psi), before being placed in a suspension of mesenchymal stem cells, to represent the biological environment of the fusion site. Three test groups were used:
There is still no consensus on which concentration of mesenchymal stem cells (MSCs) to use for promoting fracture healing in a rat model of long bone fracture. To assess the optimal concentration of MSCs for promoting fracture healing in a rat model. Wistar rats were divided into four groups according to
Back pain is a leading cause of disability worldwide and it is primarily considered to be triggered by intervertebral disc (IVD) degeneration (IVDD). Current treatments may improve pain and mobility, but carry high costs and fail to address IVD repair or regeneration. As no effective therapeutic approach has been proposed to restore inflamed and degenerated IVDs, there is the urgent need to clarify the key pathomechanism of IVDD, the involvement of inflammation, particularly complement activation in matrix catabolism, and how to target them towards tissue repair/regeneration. Mesenchymal stem cell (MSC)-based therapies have become the focus of several regenerative IVD studies. Although patients in clinical trials reported less pain after cell therapy, the long-term success of cell engraftment is unclear due to the hostile IVD environment. The mechanism-of-action of MSCs is mostly dependent on the secreted soluble factors. Moreover, priming of
The aim of the ongoing projects was to demonstrate the efficacy of autologous bone marrow derived stem cells (MSC) combined with biomaterial to induced new bone formation in a randomized multicenter controlled clinical trial. Patients with a need for bone reconstruction of residual edentulous ridges in both the mandible and maxilla due to bone defects with a vertical loss of alveolar bone volume and/or knife edge ridges (≤ than 4,5 mm) unable to provide adequate primary stabilization for dental implants were included in the clinical study. Autologous bone marrow
The use of mesenchymal stem cell (MSCs) for intervertebral disc (IVD) regeneration has been extensively explored in the last two decades. MSCs are potent cell types that can be easily and safely harvested due to their abundancy and availability. Moreover, they are characterized by the capacity to differentiate towards IVD cells as well as release growth factors to support resident cell metabolism and recruit local progenitor cells to induce endogenous repair of degenerated IVDs. This talk will outline the characteristics of the main
Stem cells represent an exciting biological therapy for the management of many musculoskeletal tissues that suffer degenerative disease and/or where the reparative process results in non-functional tissue (‘failed healing’). The original hypothesis was that implanted cells would differentiate into the target tissue cell type and synthesise new matrix. However, this has been little evidence that this happens in live animals compared to the laboratory, and more recent theories have focussed on the immunomodulatory effects via the release of paracrine factors that can still improve the outcome, especially since inflammation is now considered one of the central processes that drive poor tendon healing. Because of the initial ‘soft’ regulatory environment for the use of stem cells in domestic mammals, bone and fat-derived stem cells quickly established themselves as a useful treatment for naturally occurring musculoskeletal diseases in the horse more than 20 years ago (Smith, Korda et al. 2003). Since the tendinopathy in the horse has many similarities to human tendinopathy, we propose that the following challenges and, the lessons learnt, in this journey are highly relevant to the development of stem cells therapies for human tendinopathy:. Source – while MSCs can be recovered from many tissues, the predominant sources for autologous MSCs have been bone and fat. Other sources, including blood, amnion, synovium, and dental pulp have also been commercialised for allogenic treatments. Preparation – ex vivo culture requires transport from a licensed laboratory while ‘minimally manipulated’ preparations can be prepared patient-side. Cells also need a vehicle for transport and implantation. Delivery – transport of cells from the laboratory to the clinic for autologous ex vivo culture techniques; implantation technique (usually by ultrasound-guided injection to minimise damage to the cells (or, more rarely, incorporated into a scaffold). They can also be delivered by regional perfusion via venous or arterial routes. Retention – relatively poor although small numbers of cells do survive for at least 5 months. Immediate loss to the lungs if the cells are administered via vascular routes. Synovially administered cells do not engraft into tendon. Adverse effects – very safe although needle tracts often visible (but do not seen to adversely affect the outcome). Allogenic cells require careful characterisation for MHC Class II antigens to avoid anaphylaxis or reduced efficacy. Appropriate injuries to treat – requires a contained lesion when administered via intra-lesional injection. Intrasynovial tendon lesions are more often associated with surface defects and are therefore less appropriate for treatment. Earlier treatment appears to be more effective than delayed, when implantation by injection is more challenging. Efficacy - beneficial effects shown at both tissue and whole animal (clinical outcome) level in naturally-occurring equine tendinopathy using bone marrow-derived autologous MSCs Recent (licenced) allogenic
Mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) have great promise in the field of orthopaedic nanomedicine due to their regenerative, as well as immunomodulatory and anti-inflammatory properties. Researchers are interested in harnessing these biologically sourced nanovesicles as powerful therapeutic tools with intrinsic bioactivity to help treat various orthopaedic diseases and defects. Recently, a new class of EV mimetics has emerged known as nanoghosts (NGs). These vesicles are derived from the plasma membrane of ghost cells, thus inheriting the surface functionalities and characteristics of the parent cell while at the same time allowing for a more standardized and reproducible production and significantly greater yield when compared to EVs. This study aims to investigate and compare the osteoinductive potential of MSC-EVs and MSC-NGs in vitro as novel tools in the field of bone tissue engineering and nanomedicine. To carry out this investigation, MSC-EVs were isolated from serum-free
Deriving autologous mesenchymal stem cells (MSCs) from adipose tissues without using enzymes requires sophisticated biomedical instruments. Applied pressure on tissues and cells are adjusted manually although centrifugation and filtration systems are frequently used. The number of derived MSCs therefore could differ between instruments. We compared the number of MSCs obtained from four commercially available devices and our newly designed and produced instrument (A2, B3, L3, M2 and T3). Three-hundred mL of adipose tissue was obtained from a female patient undergoing liposuction using the transillumination solution. Obtained tissue was equally distributed to each device and handled according to the producers' guides. After handling, 3 mL stromal vascular fraction (SVF) was obtained from each device. Freshly isolated SVF was characterized using multi-color flow cytometry (Navios Flow Cytometer, Beckman Coulter, USA). Cell surface antigens were chosen according to IFATS and ISCT. CD31-FITC, CD34-PC5,5, CD73-PE, CD90-PB and CD45-A750 (Backman Coulter, USA) fluorochrome-labeled monoclonal antibodies were assessed. Markers were combined with ViaKrome (Beckman Coulter, USA) to determine cell viability. At least 10. 5. cells were acquired from each sample. A software (Navios EX, Beckman Coulter, USA) was used to create dot plots and to calculate the cell composition percentages. The data was analyzed in the Kaluza 2.1 software package (Beckman Coulter, USA). Graphs were prepared in GraphPad Prism. CD105 PC7/CD31 FITC cell percentages were 23,9%, 13,5%, 24,6%, 11,4% and 28,8% for the A2, B3, L3, M2 and T3 devices, respectively. We conclude that the isolated
In 2021 the bone grafting market was worth €2.72 billion globally. As allograft bone has a limited supply and risk of disease transmission, the demand for synthetic grafting substitutes (BGS) continues to grow while allograft bone grafts steadily decrease. Synthetic BGS are low in mechanical strength and bioactivity, inspiring the development of novel grafting materials, a traditionally laborious and expensive process. Here a novel BGS derived from sustainably grown coral was evaluated. Coral-derived scaffolds are a natural calcium carbonate bio-ceramic, which induces osteogenesis in bone marrow mesenchymal stem cells (MSCs), the cells responsible for maintaining bone homeostasis and orchestrating fracture repair. By 3D printing MSCs in coral-laden bioinks we utilise high throughput (HT) fabrication and evaluation of osteogenesis, overcoming the limitations of traditional screening methods.
Bone healing outcome is highly dependent on the initial mechanical fracture environment [1]. In vivo, direct bone healing requires absolute stability and an interfragmentary strain (IFS) below 2% [2]. In the majority of cases, however, endochondral ossification is engaged where frequency and amplitude of IFS are key factors. Still, at the cellular level, the influence of those parameters remains unknown. Understanding the regulation of naïve hMSC differentiation is essential for developing effective bone healing strategies. Human bone-marrow-derived
Osteoarthritis (OA) is a disabling disease depriving the quality of life of patients. Mesenchymal stem cells (MSCs) are recently used to modify the inflammatory and degenerative cascade of the disease. Source of MSCs could change the progression and symptoms of OA due to their different metabolomic activities. We asked whether MSCs derived from the infrapatellar fat (IPF), synovium (Sy) and subcutaneous (SC) tissues will decrease inflammatory and degenerative markers of normal and OA chondrocytes and improve regeneration in culture. Tissues were obtained from three male patients undergoing arthroscopic knee surgery due to sports injuries after ethical board approval. TNFa concentration decreased in all
Matrix-bound vesicles (MBVs) are embedded within osteoid and function as the site of initial mineral formation. However, they remain insufficiently characterised in terms of biogenesis, composition and function while their relationship with secreted culture medium EVs (sEVs) such as exosomes remains debated. We aimed to define the biogenesis and pro-mineralisation capacity of MBVs and sEVs to understand their potential in regenerative orthopaedics. sEVs and MBVs isolated from conditioned medium (differential ultracentrifugation) and ECM (collagenase digestion and differential ultracentrifugation) of mineralising MC3T3 pre-osteoblast and human bone marrow
The signaling molecule prostaglandin E2 (PGE2), synthesized by cyclooxygenase-2 (COX-2), is immunoregulatory and reported to be essential for skeletal stem cell function. Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in osteoarthritis (OA) analgesia, but cohort studies suggested that long-term use may accelerate pathology. Interestingly, OA chondrocytes secrete high amounts of PGE2. Mesenchymal stromal cell (MSC) chondrogenesis is an in vitro OA model that phenocopies PGE2 secretion along with a hypertrophic OA-like cell morphology. Our aim was to investigate cause and effects of PGE2 secretion in MSC-based cartilage neogenesis and hypertrophy and identify molecular mechanisms responsible for adverse effects in OA analgesia. Human bone marrow-derived MSCs were cultured in chondrogenic medium with TGFβ (10ng/mL) and treated with PGE2 (1µM), celecoxib (COX-2 inhibitor; 0.5µM), AH23848/AH6809 (PGE2 receptor antagonists; 10µM), or DMSO as a control (n=3–4). Assessment criteria were proteoglycan deposition (histology), chondrocyte/hypertrophy marker expression (qPCR), and ALP activity. PGE2 secretion was measured (ELISA) after TGFβ withdrawal (from day 21, n=2) or WNT inhibition (2µM IWP-2 from day 14; n=3). Strong decrease in PGE2 secretion upon TGFβ deprivation or WNT inhibition identified both pathways as PGE2 drivers. Homogeneous proteoglycan deposition and COL2A1 expression analysis showed that
Growing evidence has suggested that paracrine mechanisms of Mesenchymal stem cell (MSC) may be involved in the underlying mechanism of