Advertisement for orthosearch.org.uk
Results 1 - 20 of 173
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 72 - 72
14 Nov 2024
Uvebrant K Andersen C Lim HC Vonk L Åkerlund EL
Full Access

Introduction

Homogenous and consistent preparations of mesenchymal stem cells (MSCs) can be acquired by selecting them for integrin α10β1 (integrin a10-MSCs). Safety and efficacy of intra-articular injection of allogeneic integrin a10-MSCs were shown in two post-traumatic osteoarthritis horse studies. The current study investigated immunomodulatory capacities of human integrin a10-MSCs in vitro and their cell fait after intra-articular injection in rabbits.

Method

The concentration of produced immunomodulatory factors was measured after licensing integrin a10-MSCs with pro-inflammatory cytokines. Suppression of T-cell proliferation was determined in co-cultures with carboxyfluorescein N-succinimidyl ester (CFSE) labelled human peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3/CD28 and measuring the CFSE intensity of CD4+ cells. Macrophage polarization was assessed in co-cultures with differentiated THP-1 cells stimulated with lipopolysaccharide and analysing the M2 macrophage cell surface markers CD163 and CD206. In vivo homing and regeneration were investigated by injecting superparamagnetic iron oxide nanoparticles conjugated with Rhodamine B-labeled human integrin a10-MSCs in rabbits with experimental osteochondral defects. MSC distribution in the joint was followed by MRI and fluorescence microscopy.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 88 - 88
2 Jan 2024
Kim M Kim, K
Full Access

There is still no consensus on which concentration of mesenchymal stem cells (MSCs) to use for promoting fracture healing in a rat model of long bone fracture.

To assess the optimal concentration of MSCs for promoting fracture healing in a rat model.

Wistar rats were divided into four groups according to MSC concentrations: Normal saline (C), 2.5 × 106 (L), 5.0 × 106 (M), and 10.0 × 106 (H) groups. The MSCs were injected directly into the fracture site. The rats were sacrificed at 2 and 6 자 post-fracture. New bone formation [bone volume (BV) and percentage BV (PBV)] was evaluated using micro-computed tomography (CT). Histological analysis was performed to evaluate fracture healing score. The protein expression of factors related to MSC migration [stromal cell-derived factor 1 (SDF-1), transforming growth factor-beta 1 (TGF-β1)] and angiogenesis [vascular endothelial growth factor (VEGF)] was evaluated using western blot analysis. The expression of cytokines associated with osteogenesis [bone morphogenetic protein-2 (BMP-2), TGF-β1 and VEGF] was evaluated using real-time polymerase chain reaction.

Micro-CT showed that BV and PBV was significantly increased in groups M and H compared to that in group C at 6 wk post-fracture (P = 0.040, P = 0.009; P = 0.004, P = 0.001, respectively). Significantly more cartilaginous tissue and immature bone were formed in groups M and H than in group C at 2 and 6 wk post-fracture (P = 0.018, P = 0.010; P = 0.032, P = 0.050, respectively). At 2 wk post fracture, SDF-1, TGF-β1 and VEGF expression were significantly higher in groups M and H than in group L (P = 0.031, P = 0.014; P < 0.001, P < 0.001; P = 0.025, P < 0.001, respectively). BMP-2 and VEGF expression were significantly higher in groups M and H than in group C at 6 wk postfracture (P = 0.037, P = 0.038; P = 0.021, P = 0.010). Compared to group L, TGF-β1 expression was significantly higher in groups H (P = 0.016). There were no significant differences in expression levels of chemokines related to MSC migration, angiogenesis and cytokines associated with osteogenesis between M and H groups at 2 and 6 wk post-fracture.

The administration of at least 5.0 × 106 MSCs was optimal to promote fracture healing in a rat model of long bone fractures.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 125 - 125
2 Jan 2024
Scala P Giudice V Selleri C Maffulli N Rehak L Porta G
Full Access

Spontaneous muscle regenerative potential is limited, as severe injuries incompletely recover and result in chronic inflammation. Current therapies are restricted to conservative management, not providing a complete restitutio ad integrum; therefore, alternative therapeutic strategies are welcome, such as cell-based therapies with stem cells or Peripheral Blood Mononuclear Cells (PBMCs). Here, we described two different in vitro myogenic models: a 2D perfused system and a 3D bioengineered scaffold within a perfusion bioreactor. Both models were assembled with human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and human primary skeletal myoblasts (hSkMs) to study induction and maintenance of myogenic phenotype in presence of PBMCs. When hBM-MSCs were cultured with human primary skeletal myoblasts (hSkMs) in medium supplemented with 10 ng/mL of bFGF; cells showed increased expression of myogenic-related gene, such as Desmin and Myosin Heavy Chain II (MYH2) after 21 days, and a prevalent expression of anti-inflammatory cytokines (IL10, 15-fold). Next, PBMCs were added in an upper transwell chamber and hBM-MSCs significantly upregulated myogenic genes throughout the culture period, while pro-inflammatory cytokines (e.g., IL12A) were downregulated. In 3D, hBM-MSCs plus hSkMs embedded in fibrin-based scaffolds, cultured in dynamic conditions, showed that all myogenic-related genes tended to be upregulated in the presence of PBMCs, and Desmin and MYH2 were also detected at protein level, while pro-inflammatory cytokine genes were significantly downregulated in the presence of PBMCs. In conclusion, our works suggest that hBM-MSCs have a versatile myogenic potential, enhanced and modulated by PMBCs. Moreover, our 3D biomimetic approach seemed to better resemble the tissue architecture allowing an efficient in vitro cellular cross-talk.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 89 - 89
2 Jan 2024
Gao Y Wu X Zhang Z Xu J
Full Access

Stem cell therapy is an effective means to address the repair of large segmental bone defects. However, the intense inflammatory response triggered by the implants severely impairs stem cell differentiation and tissue regeneration. High-dose transforming growth factor β1 (TGF-β1), the most locally expressed cytokine in implants, inhibits osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and promotes tissue fibrosis, severely compromising the efficacy of stem cell therapy. Small molecule inhibitors of TGF-β1 can be used to ameliorate the osteogenic disorders caused by high concentrations of TGF-β1, but systemic inhibition of TGF-β1 function will cause strong adverse effects. How to find safe and reliable molecular targets to antagonize TGF-β1 remains to be elucidated. Orphan nuclear receptor Nr4a1, an endogenous inhibitory molecule of TGF-β1, suppresses tissue fibrosis, but its role in BMSC osteogenesis is unclear. We found that TGF-β1 inhibited Nr4a1 expression through HDAC4. Overexpression of Nr4a1 in BMSCs reversed osteogenic differentiation inhibited by high levels of TGF- β1. Mechanistically, RNA sequencing showed that Nr4a1 activated the ECM-receptor interaction and Hippo signaling pathway, which in turn promoted BMSC osteogenesis. In bone defect repair and fracture healing models, transplantation of Nr4a1-overexpressing BMSCs into C57BL/6J mice or treatment with the Nr4a1 agonist Csn-B significantly ameliorated inflammation-induced bone regeneration disorders. In summary, our findings confirm the endogenous inhibitory effect of Nr4a1 on TGF- β1 and uncover the effectiveness of Nr4a1 agonists as a therapeutic tool to improve bone regeneration, which provides a new solution strategy for the treatment of clinical bone defects and inflammatory skeletal diseases.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 5 - 5
2 Jan 2024
Karaçoban L Gizer M Fidan BB Kaplan O Çelebier M Korkusuz P Turhan E Korkusuz F
Full Access

Osteoarthritis (OA) is a disabling disease depriving the quality of life of patients. Mesenchymal stem cells (MSCs) are recently used to modify the inflammatory and degenerative cascade of the disease. Source of MSCs could change the progression and symptoms of OA due to their different metabolomic activities. We asked whether MSCs derived from the infrapatellar fat (IPF), synovium (Sy) and subcutaneous (SC) tissues will decrease inflammatory and degenerative markers of normal and OA chondrocytes and improve regeneration in culture. Tissues were obtained from three male patients undergoing arthroscopic knee surgery due to sports injuries after ethical board approval. TNFa concentration decreased in all MSC groups (Sy=156,6±79, SC=42,1±6 and IPF=35,5±3 pg/ml; p=0,036) on day 14 in culture. On day seven (Sy=87,4±43,7, SC=23±8,9 and IPF=14,7±3,3 pg/ml, p=0,043) and 14 (Sy=29,1±11,2, SC=28,3±18,5 and IPF=20,3±16,2 pg/ml, p=0,043), MMP3 concentration decreased in all groups. COMP concentration changes however were not significant. Plot scores of tissues for PC2-13,4% were significantly different. Based on the results of liquid chromatography-mass spectrometry (LC-MS) metabolomics coupled with recent data processing strategies, clinically relevant seven metabolites (L-fructose, a-tocotrienol, coproporphyrin, nicotinamide, bilirubin, tauro-deoxycholic acid and galactose-sphingosine) were found statistically different (p<0.05 and fold change>1.5) ratios in tissue samples. Focusing on these metabolites as potential therapeutics could enhance MSC therapies.

Acknowledgment: Hacettepe University, Scientific Research Projects Coordination Unit (#THD-2020-18692) and Turkish Society of Orthopedics and Traumatology (#TOTBID-89) funded this project. Feza Korkusuz MD is a member of the Turkish Academy of Sciences (TÜBA).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 86 - 86
2 Jan 2024
Feng M Dai S Ni J Mao G Dang X Shi Z
Full Access

Varus malalignment increases the susceptibility of cartilage to mechanical overloading, which stimulates catabolic metabolism to break down the extracellular matrix and lead to osteoarthritis (OA). The altered mechanical axis from the hip, knee to ankle leads to knee joint pain and ensuing cartilage wear and deterioration, which impact millions of the aged population. Stabilization of the remaining damaged cartilage, and prevention of further deterioration, could provide immense clinical utility and prolong joint function. Our previous work showed that high tibial osteotomy (HTO) could shift the mechanical stress from an imbalanced status to a neutral alignment. However, the underlying mechanisms of endogenous cartilage stabilization after HTO remain unclear. We hypothesize that cartilage-resident mesenchymal stem cells (MSCs) dampen damaged cartilage injury and promote endogenous repair in a varus malaligned knee. The goal of this study is to further examine whether HTO-mediated off-loading would affect human cartilage-resident MSCs' anabolic and catabolic metabolism. This study was approved by IACUC at Xi'an Jiaotong University. Patients with medial compartment OA (52.75±6.85 yrs, left knee 18, right knee 20) underwent open-wedge HTO by the same surgeons at one single academic sports medicine center. Clinical data was documented by the Epic HIS between the dates of April 2019 and April 2022 and radiographic images were collected with a minimum of 12 months of follow-up. Medial compartment OA with/without medial meniscus injury patients with unilateral Kellgren /Lawrence grade 3–4 was confirmed by X-ray. All incisions of the lower extremity healed well after the HTO operation without incision infection. Joint space width (JSW) was measured by uploading to ImageJ software. The Knee injury and Osteoarthritis Outcome Score (KOOS) toolkit was applied to assess the pain level. Outerbridge scores were obtained from a second-look arthroscopic examination. RNA was extracted to quantify catabolic targets and pro-inflammatory genes (QiaGen). Student's t test for two group comparisons and ANOVA analysis for differences between more than 2 groups were utilized. To understand the role of mechanical loading-induced cartilage repair, we measured the serial changes of joint space width (JSW) after HTO for assessing the state of the cartilage stabilization. Our data showed that HTO increased the JSW, decreased the VAS score and improved the KOOS score significantly. We further scored cartilage lesion severity using the Outerbridge classification under a second-look arthroscopic examination while removing the HTO plate. It showed the cartilage lesion area decreased significantly, the full thickness of cartilage increased and mechanical strength was better compared to the pre-HTO baseline. HTO dampened medial tibiofemoral cartilage degeneration and accelerate cartilage repair from Outerbridge grade 2 to 3 to Outerbridge 0 to 1 compared to untreated varus OA. It suggested that physical loading was involved in HTO-induced cartilage regeneration. Given that HTO surgery increases joint space width and creates a physical loading environment, we hypothesize that HTO could increase cartilage composition and collagen accumulation. Consistent with our observation, a group of cartilage-resident MSCs was identified. Our data further showed decreased expression of RUNX2, COL10 and increased SOX9 in MSCs at the RNA level, indicating that catabolic activities were halted during mechanical off-loading. To understand the role of cartilage-resident MSCs in cartilage repair in a biophysical environment, we investigated the differentiation potential of MSCs under 3-dimensional mechanical loading conditions. The physical loading inhibited catabolic markers (IL-1 and IL-6) and increased anabolic markers (SOX9, COL2).

Knee-preserved HTO intervention alleviates varus malalignment-related knee joint pain, improves daily and recreation function, and repairs degenerated cartilage of medial compartment OA. The off-loading effect of HTO may allow the mechanoregulation of cartilage repair through the differentiation of endogenous cartilage-derived MSCs.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 96 - 96
2 Jan 2024
Al-Sharabi N
Full Access

Growing evidence has suggested that paracrine mechanisms of Mesenchymal stem cell (MSC) may be involved in the underlying mechanism of MSC after transplantation, and extracellular vesicles (EVs) are an important component of this paracrine role. The aim of this study was to investigate the in vitro osteogenic effects of EVs derived from undifferentiated mesenchymal stem cells and from chemically induced to differentiate into osteogenic cells for 7 days. Further, the osteoinductive potential of EVs for bone regeneration in rat calvarial defects was assessed.

We could isolate and characterize EVs from naïve and osteogenic-induced MSCs. Proteomic analysis revealed that EVs contained distinct protein profiles, with Osteo-EVs having more differentially expressed proteins with osteogenic properties. EVs were found to enhance the proliferation and migration of cultured MSC. In addition, the study found that Osteo-EVs/MEM combination scaffolds could enhance greater bone formation after 4 weeks as compared to native MEM loaded with serum-free media.

The study suggests that EVs derived from chemically osteogenic-induced MSCs for 7 days can significantly enhance both the osteogenic differentiation activity of cultured hMSCs and the osteoinductivity of MEM scaffolds. The results indicate that Osteo-MSC-secreted nanocarriers-EVs combined with MEM scaffolds can be used for repairing bone defects.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 143 - 143
2 Jan 2024
Alkhrayef M Muhammad H Hosni RA McCaskie A Birch M
Full Access

Tissue repair is believed to rely on tissue-resident progenitor cell populations proliferating, migrating, and undergoing differentiation at the site of injury. During these processes, the crosstalk between mesenchymal stromal/stem cells (MSCs) and macrophages has been shown to play a pivotal role. However, the influence of extracellular matrix (ECM) remodelling in this crosstalk, remains elusive.

Human MSCs cultured on tissue culture plastic (TCP) and encased within fibrin in vitro were treated with/without TNFα and IFNγ. Human monocytes were cocultured with untreated/pretreated MSCs on TCP or within fibrin. After seven days, the conditioned media (CM) were collected. Human chondrocytes were exposed to CM in a migration assay. The impact of TGFβ was assessed by adding an inhibitor (TGFβRi). Cell activity was assessed using RT-qPCR and XL-protein-profiler-array.

Previously, we demonstrated that culturing human MSCs within 3D-environments significantly enhances their immunoregulatory activity in response to pro-inflammatory stimuli. In this study, monocytes were co-cultured with MSCs within fibrin, acquiring a distinct M2-like repair macrophage phenotype in contrast to TCP co-cultures. MSC/macrophage CM characterization using a protein array demonstrated differences in release of several factors, including chemokines, growth factors and ECM components. Chondrocyte migration was significantly reduced in CM from untreated MSC/monocytes co-cultures in fibrin compared to CM of untreated MSCs/monocytes on TCP. This impact on migration was not seen with chondrocytes cultured in CM of monocytes co-cultured with pretreated MSCs in fibrin. The CM of monocytes co-cultured with pretreated MSCs in fibrin up-regulates COL2A1 and SOX9 compared to TCP. Chondrogenesis and migration were TGFβ dependent.

MSC/macrophage crosstalk and responsiveness to cytokines are influenced by the ECM environment, which subsequently impacts tissue-resident cell migration and chondrogenesis. The direct effects of ECM on MSC/macrophage secretory phenotype is complemented by the dynamic ECM binding and release of growth factors such as TGFβ.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 103 - 103
2 Jan 2024
Cardona-Timoner M Bessa-Gonçalves M Nogueira F Barbosa M Santos S
Full Access

Bone defects and fractures, caused by injury, trauma or tumour resection require hospital treatment and temporary loss of mobility, representing an important burden for societies and health systems worldwide. Autografts are the gold standard for promoting new bone formation, but these may provide insufficient material and lead to donor site morbidity and pain. We previously showed that Fibrinogen (Fg) scaffolds promote bone regeneration in vivo (1), and that modifying them with 10mM of Magnesium (Mg) ions modulates macrophage response in vitro and in vivo (2). Also, we showed that Extracellular Vesicles (EV) secreted by Dendritic Cells (DC) recruit Mesenchymal Stem/Stromal Cells (MSC)(3). Herein, we aim to functionalize FgMg scaffolds with DC-EV, to promote recruitment and osteogenic differentiation of MSC. Scaffolds were produced by freeze-drying (2). Ethical permission was sought for all studies. Primary human peripheral blood monocyte-derived DC were cultured, their secreted EV were isolated by differential (ultra)-centrifugation and characterised by transmission electron microscopy and nanoparticle tracking analysis (3). Bone marrow MSC were used to determine the impact of EV-functionalized scaffolds through migration assays and their osteogenic differentiation was assessed by Alizarin Red staining. Fg and FgMg scaffolds functionalized with EV were characterized. Fg and FgMg scaffolds functionalized with DC-secreted EV were more efficient at recruiting MSC than scaffolds alone. MSC cultured on FgMg scaffolds showed significantly increased calcium deposits, in comparison with those cultured on Fg scaffolds. Fg scaffold modification by Mg promotes MSC osteogenic differentiation, while their functionalization with DC-secreted EV acts to promote MSC recruitment. This renders the FgMg-EV functionalized scaffolds an attractive material to promote new bone formation. Acknowledgments: Work funded by Orthoregeneration Network (ON Pilot Grant Spine 2021, EVS4Fusion). MCT supported by ERASMUS+ program


Full Access

Mesenchymal stem cells (MSCs) have been studied for the treatment of Osteoarthritis (OA), a potential mechanism of MSC therapies has been attributed to paracrine activity, in which extracellular vesicles (EVs) may play a major role. It is suggested that MSCs from younger donor compete with adult MSC in their EV production capabilities. Therefore, MSCs generated from induced pluripotent mesenchymal stem cells (iMSC) appear to provide a promising source. In this study, MSCs and iMSC during long term-expansion using a serum free clinical grade condition, were characterized for surface expression pattern, proliferation and differentiation capacity, and senescence rate. Culture media were collected continuously during cell expansion, and EVs were isolated. Nanoparticle tracking analysis (NTA), transmission electron microscopy, western blots, and flow cytometry were used to identify EVs. We evaluated the biological effects of MSC and iMSC-derived EVs on human chondrocytes treated with IL-1α, to mimic the OA environment.

In both cell types, from early to late passages, the amount of EVs detected by NTA increased significantly, EVs collected during cells expansion, retained tetraspanins (CD9, CD63 and CD81) expression. The anti-inflammatory activity of MSC-EVs was evaluated in vitro using OA chondrocytes, the expression of IL-6, IL-8 and COX-2 was significantly reduced after the treatment with hMSC-derived EVs isolated at early passage. The miRNA content of EVs was also investigated, we identify miRNA that are involved in specific biological function.

At the same time, we defined the best culture conditions to maintain iMSC and define the best time window in which to isolate EVs with highest biological activity.

In conclusion, a clinical grade serum-free medium was found to be suitable for the isolation and expansion of MSCs and iMSC with increased EVs production for therapeutic applications.

Acknowledgments: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874671


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 97 - 97
2 Jan 2024
Mohamed-Ahmed S Yassin M Rashad A Lie S Suliman S Espedal H Idris S Finne-Wistrand A Mustafa K Vindenes H Fristad I
Full Access

Mesenchymal stem cells (MSC) have been used for bone regenerative applications as an alternative approach to bone grafting. Selecting the appropriate source of MSC is vital for the success of this therapeutic approach. MSC can be obtained from various tissues, but the most used sources of MSC are Bone marrow (BMSC), followed by adipose tissue (ASC). A donor-matched comparison of these two sources of MSC ensures robust and reliable results.

Despite the similarities in morphology and immunophenotype of donor-matched ASC and BMSC, differences existed in their proliferation and in vitro differentiation potential, particularly osteogenic differentiation that was superior for BMSC, compared to ASC. However, these differences were substantially influenced by donor variations. In vivo, although the upregulated expression of osteogenesis-related genes in both ASC and BMSC, more bone was regenerated in the calvarial defects treated with BMSC compared to ASC, especially during the initial period of healing. According to these findings, compared to ASC, BMSC may result in faster regeneration and healing, when used for bone regenerative applications.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 55 - 55
17 Nov 2023
Alkhrayef M Muhammad H Hosni RA McCaskie A Birch M
Full Access

Abstract

Objectives

Tissue repair is believed to rely on tissue-resident progenitor cell populations proliferating, migrating, and undergoing differentiation at the site of injury. During these processes, the crosstalk between mesenchymal stromal/stem cells (MSCs) and macrophages has been shown to play a pivotal role. However, the influence of extracellular matrix (ECM) remodelling in this crosstalk, remains elusive.

Methods

Human MSCs cultured on tissue culture plastic (TCP) and encased within fibrin in vitro were treated with/without TNFα and IFNγ. Human monocytes were cocultured with untreated/pretreated MSCs on TCP or within fibrin. After seven days, the conditioned media (CM) were collected. Human chondrocytes were exposed to CM in a migration assay. The impact of TGFβ was assessed by adding an inhibitor (TGFβRi). Cell activity was assessed using RT-qPCR and XL-protein-profiler-array.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 19 - 19
17 Apr 2023
Niessen L Wendlandt R Schulz A
Full Access

A promising application of Mesenchymal stem cells (MSCs) is the treatment of non-unions. Substituting bone grafts, MSCs are directly injected into the fracture gap. High cell viability seems to be a prerequisite for therapeutic success. Administration of the MSCs via injection creates shear stresses possibly damaging or destroying the cells.

Aim of this study was to investigate the effect of the injection process on cell viability.

MSCs were isolated and cultivated from femoral tissue of five subjects undergoing arthroplasty. Prior to injection, the cells were identified as MSCs. After dissolving to a concentration of 1 Million cells/ml, 1 ml of the suspension was injected through a cannula of 200 mm length and 2 mm diameter (14 G) with flow rates of 38 and 100 ml/min. The viability of the MSCs at different flow rates was evaluated by staining to detect the healthy cell fraction. It was analyzed statistically against a control group via the Kruskal-Wallis-test and for equivalence via the TOST procedure. Significance level was set to 5 %, equivalence margin to 20 %.

The healthy cell fraction of the control group was 85.88 ± 2.98 %, 86.04 ± 2.53 % at 38 ml/min and 85.48 ± 1.64 % at 100 ml/min. There was no significant difference between the fraction of healthy cells (p = 0.99) for different volume flows, but a significant equivalence between the control group and the two volume flows (38 ml/min: p = 0.002, 100 ml/min: p = 0.001).

When injecting MSC solutions, e.g. into a non-union, the viability of the injected cells does not deterioriate significant. The injecting technique is therefore feasible.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 41 - 41
11 Apr 2023
Deegan A Lawlor L Yang X Yang Y
Full Access

Our previous research has demonstrated that minor adjustments to in vitro cellular aggregation parameters, i.e. alterations to aggregate size, can influence temporal and spatial mineral depositions within maturing bone cell nodules. What remains unclear, however, is how aggregate size might affect mineralisation within said nodules over long-term in vivo culture.

In this study, we used an osteoblast cell line, MLO-A5, and a primary cell culture, mesenchymal stem cells (MSC), to compare small (approximately 80 µm) with large (approximately 220 µm) cellular aggregates for potential bone nodule development after 8 weeks of culturing in a mouse model (n = 4 each group). In total, 30 chambers were implanted into the intra-peritoneal cavity of 20 male, immunocompromised mice (MF1-Nu/Nu, 4 – 5 weeks old). Nine small or three large aggregates were used per chamber. Neoveil mesh was seeded directly with 2 × 103 cells for monolayer control. At 8 weeks, the animals were euthanised and chambers fixed with formalin. Aggregate integrity and extracellular material growth were assessed via light microscopy and the potential mineralisation was assessed via micro-CT.

Many large aggregates appeared to disintegrate, whilst the small aggregates maintained their form and produced additional extracellular material with increased sizes. Both MLO-A5 cells and MSC cells saw similar results. Interestingly, however, the MSCs were also seen to produce a significantly higher volume of dense material compared to the MLO-A5 cells from micro-CT analysis.

Overall, a critical cell aggregate size appeared to exist balancing optimal tissue growth with oxygen diffusion, and cell source may influence differentiation pathway despite similar experimental parameters. The MSCs, for example, were likely producing bone via the endochondral ossification pathway, whilst the matured bone cells, MLO-A5 cells, were likely producing bone via the intramembranous ossification pathway.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 101 - 101
11 Apr 2023
Brodano G Griffoni C Facchini G Carretta E Salamanna F Tedesco G Evangelisti G Terzi S Ghermandi R Bandiera S Girolami M Pipola V Fini M Gasbarrini A Leggi L
Full Access

Aneurysmal bone cyst (ABC) of the spine is a locally aggressive benign lesion which can be treated by en bloc resection with wide margin to reduce the risk of local recurrence. To avoid morbidity associated with surgery, selective arterial embolization (SAE) can be considered the first-line treatment for ABCs of the spine. We previously introduced the use of autologous bone marrow concentrate (BMC) injection therapy to stimulate bone healing and regeneration in ABC of the spine. In this prospective study we described the clinical and radiological outcomes of percutaneous injection of autologous BMC in a series of patients affected by ABCs of the spine.

Fourteen patients (6 male, 8 female) were treated between June 2014 and December 2019 with BMC injection for ABC of the spine. The mean age was 17.85 years. The mean follow up was 37.4 months (range 12–60 months). The dimension of the cyst and the degree of ossification were measured by Computed Tomography (CT) scans before the treatment and during follow-up visits.

Six patients received a single dose of BMC, five patients received two doses and in three patients three doses of BMC were administered. The mean ossification of the cyst (expressed in Hounsfield units) increased statistically from 43.48±2.36 HU to 161.71±23.48 HU during follow-up time and the ossification was associated to an improvement of the clinical outcomes. The mean ossification over time was significantly higher in patients treated with a single injection compared to patients treated with multiple injections. No significant difference in ossification was found between cervical and non-cervical localization of the cyst. Moreover, the initial size of the cyst was not statistically associated with the degree of ossification during follow-up.

The results of this study reinforce our previous evidence on the use of BMC as a valid alternative for spinal ABC management when SAE is contraindicated or ineffective.

The initial size of the cyst and its localization does not influence the efficacy of the treatment. However, data suggest that BMC injection could be indicated as treatment of choice for spinal ABC in young adolescent women.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 17 - 17
11 Apr 2023
Tilotta V Di Giacomo G Cicione C Ambrosio L Russo F Vadalà G Papalia R Denaro V
Full Access

The aim of this study was to investigate the regenerative effects of Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs) derived exosomes (WJ-Exos) on human nucleus pulposus cells (hNPCs) in an in vitro 3D model. WJ-Exos were isolated by tangent flow filtration of WJ-MSCs conditioned media and characterized by TEM, WB for markers expression and quantified with NTA. WJ-Exos PKH26-labeled uptake in hNPCs was detected by confocal microscopy. hNPCs, isolated from surgical specimens (n=4), culture expanded in vitro and encapsulated in alginate beads, were pre-treated with IL1β (10 ng/ml) for 24 hours, then with WJ-Exos at 10, 50 and 100 µg/ml. Cells with growth medium were used as control. We examined: i) cell proliferation and viability (flow cytometry), ii) nitrite production (Griess) iii) glycosaminoglycan (GAG) amount (DMBB), iv) histological staining for extracellular matrix (ECM) analysis and v) gene expression levels of catabolic and anabolic genes (qPCR). The investigations were performed in triplicate for each donor. One-way ANOVA analysis was used to compare the groups under exam and data were expressed as mean ± S.D. A dose dependent increase in hNPCs proliferation was noticed at all exos concentrations under study. Cell death decreased significantly in WJ-Exos 50 µg/ml samples (p ≤ 0,05) compared to IL1β treated hNPCs. Nitrite production was significantly attenuated at 10µg/ml of WJ-Exos (p ≤ 0,01). GAG content and histological analysis showed a difference in ECM synthesis between treated and untreated hNPCs (p ≤ 0,05). Catabolic and inflammatory markers were modulated by WJ-Exos at 100 µg/ml concentration (p ≤ 0,05) whereas 10 µg/ml group increased anabolic gene expression levels (p ≤ 0,05). These findings offer new opportunities for the potential use of exosomes as an attractive alternative cell-free strategy of IDD. WJ-MSC exosomes ameliorate hNPCs growth and viability, attenuate ECM degradation and oxidative stress-related IDD progression after IL1β stimulation. Financial support was received from the “iPSpine” and “RESPINE” Horizon 2020 projects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 92 - 92
4 Apr 2023
Li S Ding Y Wu C Lin S Wen Z
Full Access

For patients who took joint replacement, one of the complications, aseptic joint loosening, could cause a high risk of revision surgery. Studies have shown that MSCs have the ability of homing and differentiating, and also have highly effective immune regulation and anti-inflammatory effects. However, few studies had focused on the stem cells in preventing the occurrence and development of aseptic loosening. In this research, we aimed to clarify whether human umbilical cord mesenchymal stem cells could inhibited the aseptic joint loosening caused by wear particles.

A Cranial osteolysis mice model was established on mice to examine the effect of hUC-MSCs on the Titanium particles injection area through micro-CT. The amount of stem cells injected was 2 × 10 5 cells. One week later, the mouse Cranial were obtained for micro-CT scan, and then stained with HE analysis immunohistochemical analysis of TNF-α, CD68, CCL3 and Il-1β.

All mice were free of fever and other adverse reactions, and there was no death occurred. Titanium particles caused the osteolysis at the mice cranial, while local injection of hUC-MSCs did inhibit the cranial osteolysis, with a lower BV/TV and a higher porosity. Immunohistochemical results suggested that the expression of TNF-α, CD68, CCL3 and Il-1β in the cranial in Titanium particles mice increased significantly, but was significantly reduced in mice injected with hUC-MSCs. The inhibited CD68 expression indicated that the number of macrophage was lower, which might be a result of the inhibition of CCL3.

According to the studies above, HUC-MSCs treatment of mouse cranial osteolysis model can significantly reduce osteolysis, inhibit macrophage recruitment, alleviate inflammatory response, without causing adverse reactions. It may become a promising treatment of aseptic joint loosening.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 112 - 112
4 Apr 2023
Sun Y Ding Y Wu H Wu C Li S
Full Access

Osteoarthritis (OA) is a common age-related degenerative joint disease, affecting 7% of the global population, more than 500 million people worldwide. Exosomes from mesenchymal stem cells (MSCs) showed promise for OA treatment, but the insufficient biological targeting weakens its efficacy and might bring side effects. Here, we report the chondrocyte-targeted exosomes synthesized via click chemistry as a novel treatment for OA.

Exosomes are isolated from human umbilical cord-derived MSCs (hUC-MSCs) using multistep ultracentrifugation process, and identified by electron microscope and nanoparticle tracking analysis (NTA). Chondrocyte affinity peptide (CAP) is conjugated on the surface of exosomes using click chemistry. For tracking, nontagged exosomes and CAP-exosomes are labeled by Dil, a fluorescent dye that highlights the lipid membrane of exosomes. To verify the effects of CAP-exosomes, nontagged exosomes and CAP-exosomes are added into the culture medium of interleukin (IL)-1β-induced chondrocytes. Immunofluorescence are used to test the expression of matrix metalloproteinase (MMP)-13.

CAP-exosomes, compared with nontagged exosomes, are more easily absorbed by chondrocytes. What's more, CAP-exosomes induced lower MMP-13 expression of chondrocytes when compared with nontagged exosomes (p<0.001).

CAP-exosomes show chondrocyte-targeting and exert better protective effect than nontagged exosomes on chondrocyte extracellular matrix. Histological and in vivo validation are now being conducted.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 48 - 48
1 Dec 2021
Alkhrayef MN Hotchen AJ McCaskie AW Birch MA
Full Access

Abstract

Objectives

Mesenchymal stromal/stem cells (MSCs) are increasingly recognized as regulators of immune cells during disease or tissue repair. During these situations, the extracellular matrix (ECM) is very dynamic and therefore, our studies aim to understand how ECM influences the activity of MSCs.

Methods

Human MSCs cultured on tissue culture plastic (TCP) and encapsulated within collagen type I, fibrin, or mixed Collagen-Fibrin were exposed to low dose TNFα and IFNɣ. Transcription profiles were examined using bulk RNA sequencing (RNAseq) after 24h of treatment. ELISA, Western blot, qPCR and immunofluorescence were employed to validate RNAseq results and to investigate the significance of transcriptional changes. Flow cytometry evaluated monocyte/macrophage phenotype.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 115 - 115
1 Nov 2021
Maestro L García-Rey E Bensiamar F Rodriguez-Lorenzo L Vilaboa N Saldaña L
Full Access

Introduction and Objective

Mesenchymal stem cells (MSC) are attractive candidates for bone regeneration approaches. Benefits of MSC therapy are mainly attributed to paracrine effects via soluble factors, exerting both immunoregulatory and regenerative actions. Encapsulation of MSC in hydrogels prepared with extracellular matrix (ECM) proteins has been proposed as a strategy to enhance their survival and potentiate their function after implantation. Functional activity of MSC can be regulated by the physical and mechanical properties of their microenvironment. In this work, we investigated whether matrix stiffness can modulate the crosstalk between MSC encapsulated in collagen hydrogels with macrophages and osteoblasts.

Materials and Method

Collagen hydrogels with a final collagen concentration of 1.5, 3 and 6 mg/mL loaded with human MSC were prepared. Viscoelastic properties of hydrogels were measured in a controlled stress rheometer. Cell distribution into the hydrogels was examined using confocal microscopy and the levels of the immunomodulatory factors interleukin-6 (IL-6) and prostaglandin E2 (PGE2) released by MSC were quantified by immunoassays. To determine the effect of matrix stiffness on the immunomodulatory potential of MSC, human macrophages obtained from healthy blood were cultured in media conditioned by MSC in hydrogels. The involvement of IL-6 and PGE2 in MSC-mediated immunomodulation was investigated employing neutralizing antibodies. Finally, the influence of soluble factors released by MSC in hydrogels on bone-forming cells was studied using osteoblasts obtained from trabecular bone explants from patients with osteonecrosis of the femoral head during total hip arthroplasty.