Advertisement for orthosearch.org.uk
Results 1 - 20 of 158
Results per page:
Bone & Joint 360
Vol. 13, Issue 6 | Pages 45 - 47
1 Dec 2024

The December 2024 Research Roundup360 looks at: Skeletal muscle composition, power, and mitochondrial energetics in older men and women with knee osteoarthritis; Machine-learning models to predict osteonecrosis in patients with femoral neck fractures undergoing internal fixation; Aetiology of patient dissatisfaction following primary total knee arthroplasty in the era of robotic-assisted technology; Efficacy and safety of commonly used thromboprophylaxis agents following hip and knee arthroplasty; The COVID-19 effect continues; Nickel allergy in knee arthroplasty: does self-reported sensitivity affect outcomes?; Tranexamic acid use and joint infection risk in total hip and knee arthroplasty.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims

This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture.

Methods

Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 474 - 484
10 Sep 2024
Liu Y Li X Jiang L Ma J

Aims

Rotator cuff tear (RCT) is the leading cause of shoulder pain, primarily associated with age-related tendon degeneration. This study aimed to elucidate the potential differential gene expressions in tendons across different age groups, and to investigate their roles in tendon degeneration.

Methods

Linear regression and differential expression (DE) analyses were performed on two transcriptome profiling datasets of torn supraspinatus tendons to identify age-related genes. Subsequent functional analyses were conducted on these candidate genes to explore their potential roles in tendon ageing. Additionally, a secondary DE analysis was performed on candidate genes by comparing their expressions between lesioned and normal tendons to explore their correlations with RCTs.


Bone & Joint Research
Vol. 13, Issue 8 | Pages 383 - 391
2 Aug 2024
Mannala GK Rupp M Walter N Youf R Bärtl S Riool M Alt V

Aims

Bacteriophages infect, replicate inside bacteria, and are released from the host through lysis. Here, we evaluate the effects of repetitive doses of the Staphylococcus aureus phage 191219 and gentamicin against haematogenous and early-stage biofilm implant-related infections in Galleria mellonella.

Methods

For the haematogenous infection, G. mellonella larvae were implanted with a Kirschner wire (K-wire), infected with S. aureus, and subsequently phages and/or gentamicin were administered. For the early-stage biofilm implant infection, the K-wires were pre-incubated with S. aureus suspension before implantation. After 24 hours, the larvae received phages and/or gentamicin. In both models, the larvae also received daily doses of phages and/or gentamicin for up to five days. The effect was determined by survival analysis for five days and quantitative culture of bacteria after two days of repetitive doses.


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 482 - 491
1 May 2024
Davies A Sabharwal S Liddle AD Zamora Talaya MB Rangan A Reilly P

Aims

Metal and ceramic humeral head bearing surfaces are available choices in anatomical shoulder arthroplasties. Wear studies have shown superior performance of ceramic heads, however comparison of clinical outcomes according to bearing surface in total shoulder arthroplasty (TSA) and hemiarthroplasty (HA) is limited. This study aimed to compare the rates of revision and reoperation following metal and ceramic humeral head TSA and HA using data from the National Joint Registry (NJR), which collects data from England, Wales, Northern Ireland, Isle of Man and the States of Guernsey.

Methods

NJR shoulder arthroplasty records were linked to Hospital Episode Statistics and the National Mortality Register. TSA and HA performed for osteoarthritis (OA) in patients with an intact rotator cuff were included. Metal and ceramic humeral head prostheses were matched within separate TSA and HA groups using propensity scores based on 12 and 11 characteristics, respectively. The primary outcome was time to first revision and the secondary outcome was non-revision reoperation.


Bone & Joint Research
Vol. 13, Issue 1 | Pages 40 - 51
11 Jan 2024
Lin J Suo J Bao B Wei H Gao T Zhu H Zheng X

Aims

To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections.

Methods

EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Staphylococcus aureus biofilms on Matrigel-coated glass and two materials widely used in orthopaedic implants (Ti-6Al-4V and highly cross-linked polyethylene (HXLPE)). To assess the efficacy of biofilm dispersion, crystal violet staining biofilm assay and colony counting after sonification and culturing were performed. The results were further confirmed and visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). We then investigated the efficacies of EDTA-NS irrigation in vivo in rat and pig models of biofilm-associated infection.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 128 - 128
2 Jan 2024
Kelly D
Full Access

Our musculoskeletal system has a limited capacity for repair. This has led to increased interest in the development of tissue engineering and biofabrication strategies for the regeneration of musculoskeletal tissues such as bone, ligament, tendon, meniscus and articular cartilage. This talk will demonstrate how different musculoskeletal tissues, specifically cartilage, bone and osteochondral defects, can be repaired using emerging biofabrication and 3D bioprinting strategies. This will include examples from our lab where cells and/or growth factors are bioprinted into constructs that can be implanted directly into the body, to approaches where biomimetic tissues are first engineered in vitro before in vivo implantation. The efficacy of these different biofabrication strategies in different preclinical studies will be reviewed, and lessons from the relative successes and failures of these approaches to tissue regeneration will be discussed


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 48 - 48
2 Jan 2024
Emmanuel A
Full Access

Non-linear methods in statistical shape analysis have become increasingly important in orthopedic research as they allow for more accurate and robust analysis of complex shape data such as articulated joints, bony defects and cartilage loss. These methods involve the use of non-linear transformations to describe shapes, rather than the traditional linear approaches, and have been shown to improve the precision and sensitivity of shape analysis in a variety of applications. In orthopedic research, non-linear methods have been used to study a range of topics, including the analysis of bone shape and structure in relation to osteoarthritis, the assessment of joint deformities and their impact on joint function, and the prediction of patient outcomes following surgical interventions. Overall, the use of non-linear methods in statistical shape analysis has the potential to advance our understanding of the relationship between shape and function in the musculoskeletal system and improve the diagnosis and treatment of orthopedic conditions


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 66 - 66
2 Jan 2024
Burssens A
Full Access

Osteotomies in the musculoskeletal system are joint preserving procedures to correct the alignment of the patient. In the lower limb, most of the pre-operative planning is performed on full leg weightbearing radiographs. However, these images contain a 2-dimensional projection of a 3-dimensional deformity, lack a clear visualization of the joint surface and are prone to rotational errors during patient positioning. Weightbearing CT imaging has demonstrated to overcome these shortcomings during the first applications of this device at level of the foot and ankle. Recent advances allow to scan the entire lower limb and novel applications at the level of the knee and hip are on the rise. Here, we will demonstrated the current techniques and 3-dimensional measurements used in supra- and inframalleolar osteotomies around the ankle. Several of these techniques will be transposed to other parts in the lower limb to spark future studies in this field


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 52 - 52
2 Jan 2024
den Borre I
Full Access

Geometric deep learning is a relatively new field that combines the principles of deep learning with techniques from geometry and topology to analyze data with complex structures, such as graphs and manifolds. In orthopedic research, geometric deep learning has been applied to a variety of tasks, including the analysis of imaging data to detect and classify abnormalities, the prediction of patient outcomes following surgical interventions, and the identification of risk factors for degenerative joint disease. This review aims to summarize the current state of the field and highlight the key findings and applications of geometric deep learning in orthopedic research. The review also discusses the potential benefits and limitations of these approaches and identifies areas for future research. Overall, the use of geometric deep learning in orthopedic research has the potential to greatly advance our understanding of the musculoskeletal system and improve patient care


Bone & Joint Open
Vol. 4, Issue 11 | Pages 846 - 852
8 Nov 2023
Kim RG Maher AW Karunaratne S Stalley PD Boyle RA

Aims. Tenosynovial giant cell tumour (TGCT) is a rare benign tumour of the musculoskeletal system. Surgical management is fraught with challenges due to high recurrence rates. The aim of this study was to describe surgical treatment and evaluate surgical outcomes of TGCT at an Australian tertiary referral centre for musculoskeletal tumours and to identify factors affecting recurrence rates. Methods. A prospective database of all patients with TGCT surgically managed by two orthopaedic oncology surgeons was reviewed. All cases irrespective of previous treatment were included and patients without follow-up were excluded. Pertinent tumour characteristics and surgical outcomes were collected for analysis. Results. There were 111 total cases included in the study; 71 (64%) were female, the mean age was 36 years (SD 13.6), and the knee (n = 64; 57.7%) was the most commonly affected joint. In all, 60 patients (54.1%) had diffuse-type (D-TGCT) disease, and 94 patients (84.7%) presented therapy-naïve as "primary cases" (PC). The overall recurrence rate was 46.8% for TGCT. There was a statistically significant difference in recurrence rates between D-TGCT and localized disease (75.0% vs 13.7%, relative risk (RR) 3.40, 95% confidence interval (CI) 2.17 to 5.34; p < 0.001), and for those who were referred in the ”revision cases” (RC) group compared to the PC group (82.4% vs 48.9%, RR 1.68, 95% CI 1.24 to 2.28; p = 0.011). Age, sex, tumour volume, and mean duration of symptoms were not associated with recurrence (p > 0.05). Conclusion. Recurrence rates remain high even at a tertiary referral hospital. Highest rates are seen in D-TGCT and “revision cases”. Due to the risks of recurrence, the complexity of surgery, and the need for adjuvant therapy, this paper further supports the management of TGCT in a tertiary referral multi-disciplinary orthopaedic oncology service. Cite this article: Bone Jt Open 2023;4(11):846–852


Bone & Joint 360
Vol. 12, Issue 4 | Pages 30 - 32
1 Aug 2023

The August 2023 Spine Roundup360 looks at: Changes in paraspinal muscles correspond to the severity of degeneration in patients with lumbar stenosis; Steroid injections are not effective in the prevention of surgery for degenerative cervical myelopathy; A higher screw density is associated with fewer mechanical complications after surgery for adult spinal deformity; Methylprednisolone following minimally invasive lumbar decompression: a large prospective single-institution study; Occupancy rate of pedicle screw below 80% is a risk factor for upper instrumented vertebral fracture following adult spinal deformity surgery; Deterioration after surgery for degenerative cervical myelopathy: an observational study from the Canadian Spine Outcomes and Research Network.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 219 - 230
10 Mar 2023
Wang L Li S Xiao H Zhang T Liu Y Hu J Xu D Lu H

Aims

It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth.

Methods

C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 179 - 188
7 Mar 2023
Itoh M Itou J Imai S Okazaki K Iwasaki K

Aims

Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery.

Methods

Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 80 - 80
10 Feb 2023
Bin Ghouth S Williams S Reid S Besier T Stott N Handsfield G
Full Access

Cerebral palsy (CP) is a neural condition that impacts and impairs the musculoskeletal system. Skeletal muscles, particularly in the lower limb, have previously been shown to be significantly reduced in volume in CP compared to typical controls. Muscle volume is a gross measure, however, and does not capture shape characteristics which—if quantified—could offer a robust and novel assessment of how this condition impacts skeletal muscle form and function in CP. In this study, we used mathematical shape modelling to quantify not just size, but also the shape, of soleus muscles in CP and typically developing (TD) cohorts to explore this question. Shape modelling is a mathematical technique used previously for bones, organs, and tumours. We obtained segmented muscle data from prior MRI studies in CP. We generated shape models of CP and TD cohorts and used our shape models to assess similarities and differences between the cohorts, and we statistically analysed shape differences. The shape models revealed similar principal components (PCs), i.e. the defining mathematical features of each shape, yet showed greater shape variability within the CP cohort. The model revealed a distinct feature (a superior –> inferior shift of the broad central region), indicating the model could identify muscular features that were not apparent with direct observation. Two PCs dominated the differences between CP and TD cohorts: size and aspect ratio (thinness) of the muscle. The distinct appearance characteristic in the CP model correspond to specific muscle impairments in CP to be discussed further. Overall, children with CP had smaller muscles that also tended to be long, thin, and narrow. Shape modelling captures shape features quantitatively, which indicate the ways that muscles are being impacted in CP. In the future, we hope to tailor this technique toward informing diagnosis and treatments in CP


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_1 | Pages 3 - 3
23 Jan 2023
van Loon P van Erve RHG Soeterbroek AS Grotenhuis AJ
Full Access

Spinal deformations are posture dependent. Official data from the Netherlands show that youth are encountering increasing problems with the musculoskeletal system (>40% back pain, and sport injury proneness). Prolonged sloth and slumped sitting postures are causative factors. Dutch youth are “champion sitting” in Europe. The effects of sitting on the development of posture and function of locomotion (stiffness) during growth have only been reported clearly in classic textbooks (in German) of practical anatomy and orthopaedics. Research with relevant clinical examinations is being done to understand epidemiological data on the increasing posture-dependent problems. A cohort of adolescents (15–18 years) in secondary school was assessed for sagittal postural deviations while bending. 248 children completed a questionnaire, and tests were done on neuromuscular tightness. The femorotibial angle was used to measure hamstring tightness. Measurement of the dorsiflexion of the foot was used to assess the tightness of calf muscles and Achilles tendons. All adolescents were photographed laterally while performing the finger–floor test (used to test flexibility), assessed as a knockout test: “Can you reach the floor or not?” The spinal profiles while bending were classified as abnormal arcuate or angular kyphosis. Hamstring tightness was present in 62.1% of the cohort in both legs, and in 18.2% unilaterally. Achilles tendon tightness was present bilaterally in 59.3%, and unilaterally in 19.4%. Activities with presence of stiffness (finger–floor distance), in descending order, were football, running, no sports, field hockey, tennis, dance, and gymnastics. 93.5% of the soccer players had tight hamstrings in both legs compared with none of those performing gymnastics. The correlation of the finger–floor test with tight hamstrings was 73.2%. For sagittal bending deformities, the correlation between form and function deficits cannot be made yet. 80 of 248 spines were rated by the examiners as having deformed flexion. Since Andry (1741) and at the zenith of continental orthopaedics and anatomy around 1900, the prolonged flexed positions of a young spine were indicated as being the main cause of deformity by overload and shear loads on immature discs and cartilage, preventing normal development of the discs. Nachemson proved that the intradiscal pressure in sitting adults was extremely high, so it follows that children must also be at risk. Evidence suggests that youth, generally because of their sedentary and “screenful lifestyle”, will encounter serious problems in growth, manifesting as incongruent neuro-osseous growth (Roth), serious neuromuscular tightness (being prone to injury), and spinal deformations, leading to pain


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 16 - 16
1 Dec 2022
Ragni E Orfei CP Colombini A Viganò M De Luca P Libonati F de Girolamo L
Full Access

In the context of regenerative medicine for the treatment of musculoskeletal pathologies mesenchymal stromal cells (MSCs) have shown good results thanks to secretion of therapeutic factors, both free and conveyed within the extracellular vesicles (EV), which in their totality constitute the “secretome”. The portfolio and biological activity of these molecules can be modulated by both in vitro and in vivo conditions, thus making the analysis of these activities very complex. A deep knowledge of the targets regulated by the secretome has become a matter of fundamental importance and a homogeneous and complete molecular characterization is still lacking in the field of applications for the musculoskeletal system. Therefore, the aim of this work was to characterize the secretome obtained from adipose-derived MSCs (ASCs), and its modulation after pre-conditioning of the ASCs. Pre-conditioning was done by culturing cells in the presence of i) high levels of IFNγ, as proposed for the production of clinical grade secretome with enhanced regenerative potential, ii) low levels of inflammatory stimuli, mimicking conditions found in the osteoarthritis (OA) synovial fluid. Furthermore, EVs ability to migrate within cartilage, chondrocyte and synoviocytes obtained from OA patients was evaluated. The data showed that more than 50 cytokines / chemokines and more than 200 EV-microRNAs are detectable at various intensity levels in ASCs secretomes. The majority of the most abundantly present molecules are involved in the remodelling of the extracellular matrix and in the homeostasis and chemotaxis of inflammatory cells including macrophages, which in OA are often characterized by an M1 inflammatory polarization, promoting their transition to an M2 anti-inflammatory phenotype. Inflammatory priming with IFNγ and synovial fluid-like conditions were able to further increase the ability of the secretome to interact with inflammatory cells and modulate their migration. Finally, the penetration of the EVs in the cartilage explants resulted a rapid process, which begins a few minutes after administration of the EVs that are able to reach a depth of 30-40 μm in 5 hours. The same capacity for interaction was also verified in chondrocytes and synoviocytes isolated from the cartilage and synovial membrane of OA patients. Thanks to the soluble factors and EV-microRNAs, the ASCs secretome has shown a strong propensity to modulate the inflammatory and degenerative processes that characterize OA. The inflammatory pre-conditioning through high concentrations of inflammatory molecules or in conditions similar to the synovial fluid of OA patients was able to increase this capacity by increasing their chemotactic power. The microscopy data also support the hypothesis of the ability of MSC-EVs to influence the chondrocytes residing in the ECM of the cartilage and the synovial cells of the synovial membrane through active interaction and the release of their therapeutic content


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 4 - 4
1 Dec 2022
Bazzocchi A
Full Access

Imaging can provide valuable information about the function of tissues and organs. The capacity for detecting and measuring imaging biomarkers of biological activities, allows for a better understanding of the pathophysiology of any process in the human body, including the musculoskeletal system. This is of particular importance in oncologic, metabolic and rheumatologic diseases, but not limited to these. In the domain of the musculoskeletal system, functional imaging also means to be able to address biomechanical evaluations. Weight-bearing imaging and dynamic studies have a prominent role. All imaging techniques (X-rays, CT, MR, ultrasound) are in demand, and offer different applications, specific equipment and novel methods for addressing this. Functional imaging is also essential to drive minimally invasive treatments – i.e. interventional radiology, and new treatment approaches move together with the advances on imaging guidance methods. On both the diagnostic and the interventional side, the increasing availability of dedicated equipment and the development of specific imaging methods and protocols greatly helps the transition from research to clinical practice


Bone & Joint 360
Vol. 11, Issue 6 | Pages 45 - 47
1 Dec 2022

The December 2022 Research Roundup360 looks at: Halicin is effective against Staphylococcus aureus biofilms in vitro; Synovial fluid and serum neutrophil-to-lymphocyte ratio: useful in septic arthritis?; Transcutaneous oximetry and wound healing; Orthopaedic surgery causes gut microbiome dysbiosis and intestinal barrier dysfunction; Mortality in alcohol-related cirrhosis: a nationwide population-based cohort study; Self-reported resistance training is associated with better bone microarchitecture in vegan people.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 518 - 527
17 Aug 2022
Hu W Lin J Wei J Yang Y Fu K Zhu T Zhu H Zheng X

Aims

To evaluate inducing osteoarthritis (OA) by surgical destabilization of the medial meniscus (DMM) in mice with and without a stereomicroscope.

Methods

Based on sample size calculation, 70 male C57BL/6 mice were randomly assigned to three surgery groups: DMM aided by a stereomicroscope; DMM by naked eye; or sham surgery. The group information was blinded to researchers. Mice underwent static weightbearing, von Frey test, and gait analysis at two-week intervals from eight to 16 weeks after surgery. Histological grade of OA was determined with the Osteoarthritis Research Society International (OARSI) scoring system.