The aim of this study was to evaluate the radiological outcome of patients with large bone defects in the femur and tibia who were treated according to the guidelines of the diamond concept in our department (Centre for Orthopedics, Trauma Surgery, and Paraplegiology). The following retrospective, descriptive analysis consists of patients treated in our department between January 2010 and December 2021. In total, 628 patients were registered, of whom 108 presented with a large-sized defect (≥ 5 cm). A total of 70 patients met the inclusion criteria. The primary endpoint was radiological consolidation of nonunions after one and two years via a modified Lane-Sandhu Score, including only radiological parameters.Aims
Methods
The non-union of long bones poses a substantial challenge to clinicians and patients alike. The Ilizarov fixation system and Limb Reconstruction System (LRS), renowned for their versatility in managing complex non-unions. The purpose of this retrospective study was to assess the outcomes of acute docking with the bone peg-in-bone technique for the management of non-unions of long bones. The study seeks to evaluate its effectiveness in achieving complete bony union, preserving limb length and alignment, correcting existing deformities, and preventing the onset of new ones. A retrospective analysis of 42 patients was done with infected and non-infected non-unions of long bones who received treatment at a tertiary care hospital between April 2016 to April 2022. We utilized the Association for the Study and Application of Methods of the Ilizarov (ASAMI) scoring system to assess both bone and functional outcomes and measured mechanical lateral distal femoral angle (mLDFA) for the femur and the medial proximal tibial angle (MPTA) for the tibia.Introduction
Method
The optimal management of posterior malleolar ankle fractures, a prevalent type of ankle trauma, is essential for improved prognosis. However, there remains a debate over the most effective surgical approach, particularly between screw and plate fixation methods. This study aims to investigate the differences in outcomes associated with these fixation techniques. We conducted a comprehensive review of clinical trials comparing anteroposterior (A-P) screws, posteroanterior (P-A) screws, and plate fixation. Two investigators validated the data sourced from multiple databases (MEDLINE, EMBASE, and Web of Science). Following PRISMA guidelines, we carried out a network meta-analysis (NMA) using visual analogue scale and American Orthopaedic Foot and Ankle Score (AOFAS) as primary outcomes. Secondary outcomes included range of motion limitations, radiological outcomes, and complication rates.Aims
Methods
The June 2023 Wrist & Hand Roundup360 looks at: Residual flexion deformity after scaphoid nonunion surgery: a seven-year follow-up study; The effectiveness of cognitive behavioural therapy for patients with concurrent hand and psychological disorders; Bite injuries to the hand and forearm: analysis of hospital stay, treatment, and costs; Outcomes of acute perilunate injuries - a systematic review; Abnormal MRI signal intensity of the triangular fibrocartilage complex in asymptomatic wrists; Patient comprehension of operative instructions with a paper handout versus a video: a prospective, randomized controlled trial; Can common hand surgeries be undertaken in the office setting?; The effect of corticosteroid injections on postoperative infections in trigger finger release.
Fracture nonunion is a severe clinical problem for the patient, as well as for the clinician. About 5-20% of fractures does not heal properly after more than six months, with a 19% nonunion rate for tibia, 12% for femur and 13% for humerus, leading to patient morbidity, prolonged hospitalization, and high costs. The standard treatment with iliac crest-derived autologous bone filling the nonunion site may cause pain or hematoma to the patient, as well as major complications such as infection. The application of mesenchymal autologous cells (MSC) to improve bone formation calls for randomized, open, two-arm clinical studies to verify safety and efficacy. The ORTHOUNION * project ( Starting from January 2017, patients with nonunion of femur, tibia or humerus have been actively enrolled in Spain, France, Germany, and Italy. The study protocol encompasses two experimental arms, i.e., autologous bone marrow-derived mesenchymal cells after expansion (‘high dose’ or ‘low dose’ MSC) combined to ceramic granules (MBCP™, Biomatlante), and iliac crest-derived autologous trabecular bone (ICAG) as active comparator arm, with a 2-year follow-up after surgery. Despite the COVID 19 pandemic with several lockdown periods in the four countries, the trial was continued, leading to 42 patients treated out of 51 included, with 11 receiving the bone graft (G1 arm), 15 the ‘high dose’ MSC (200x106, G2a arm) and 16 the ‘low dose’ MSC (100x106, G2b arm). The Rizzoli Orthopaedic Institute has functioned as coordinator of the Italian clinical centres (Bologna, Milano, Brescia) and the Biomedical Science and Technologies and Nanobiotechnology Lab of the RIT Dept. has enrolled six patients with the collaboration of the Rizzoli’ 3rd Orthopaedic and Traumatological Clinic prevalently Oncologic. Moreover, the IOR Lab has collected and analysed the blood samples from all the patients treated to monitor the changes of the bone turnover markers following the surgical treatment with G1, G2a or G2b protocols. The clinical and biochemical results of the study, still under evaluation, are presented. * ORTHOUNION Horizon 2020 GA 733288
Osteoarticular reconstruction of the distal femur in childhood has the advantage of preserving the tibial physis. However, due to the small size of the distal femur, matching the host bone with an osteoarticular allograft is challenging. In this study, we compared the outcomes and complications of a resurfaced allograft-prosthesis composite (rAPC) with those of an osteoarticular allograft to reconstruct the distal femur in children. A retrospective analysis of 33 skeletally immature children with a malignant tumour of the distal femur, who underwent resection and reconstruction with a rAPC (n = 15) or osteoarticular allograft (n = 18), was conducted. The median age of the patients was ten years (interquartile range (IQR) 9 to 11) in the osteoarticular allograft group and nine years (IQR 8 to 10) in the rAPC group (p = 0.781). The median follow-up of the patients was seven years (IQR 4 to 8) in the osteoarticular allograft group and six years (IQR 3 to 7) in the rAPC group (p = 0.483). Limb function was evaluated using the Musculoskeletal Tumor Society (MSTS) score.Aims
Methods
This observational cross-sectional study aimed to answer the following questions: 1) how has nonunion incidence developed from 2009 to 2019 in a nationwide cohort; 2) what is the age and sex distribution of nonunions for distinct anatomical nonunion localizations; and 3) how high were the costs for surgical nonunion treatment in a level 1 trauma centre in Germany? Data consisting of annual International Classification of Diseases (ICD)-10 diagnosis codes from German medical institutions from 2009 to 2019, provided by the Federal Statistical Office of Germany (Destatis), were analyzed. Nonunion incidence was calculated for anatomical localization, sex, and age groups. Incidence rate ratios (IRRs) were determined and compared with a two-sample z-test. Diagnosis-related group (DRG)-reimbursement and length of hospital stay were retrospectively retrieved for each anatomical localization, considering 210 patients.Aims
Methods
The study objective was to prospectively assess clinical outcomes for a pilot cohort of tibial shaft fractures treated with a new tibial nailing system that produces controlled axial interfragmentary micromotion. The hypothesis was that axial micromotion enhances fracture healing compared to static interlocking. Patients were treated in a single level I trauma centre over a 2.5-year period. Group allocation was not randomized; both the micromotion nail and standard-of-care static locking nails (control group) were commercially available and selected at the discretion of the treating surgeons. Injury risk levels were quantified using the Nonunion Risk Determination (NURD) score. Radiological healing was assessed until 24 weeks or clinical union. Low-dose CT scans were acquired at 12 weeks and virtual mechanical testing was performed to objectively assess structural bone healing.Aims
Methods
The aims of this network meta-analysis (NMA) were to examine nonunion rates and functional outcomes following various operative and nonoperative treatments for displaced mid-shaft clavicle fractures. Initial search strategy incorporated MEDLINE, PubMed, Embase, and the Cochrane Library for relevant randomized controlled trials (RCTs). Four treatment arms were created: nonoperative (NO); intramedullary nailing (IMN); reconstruction plating (RP); and compression/pre-contoured plating (CP). A Bayesian NMA was conducted to compare all treatment options for outcomes of nonunion, malunion, and function using the Disabilities of the Arm Shoulder and Hand (DASH) and Constant-Murley Shoulder Outcome scores.Aims
Methods
Non-union is agonising for patients, complex for surgeons and a costly burden to our healthcare service; as such, its management must be well defined. There is debate as to the requirements for the successful treatment of such patients, in particular, the need for additional biological therapies to ensure union. This study's primary aim was to determine if operative treatment alone was an effective treatment for the non-union of long bones in the upper and lower limbs compared to the pre-existing literature using biological therapies. A single-centre retrospective cohort study using prospectively collected data was performed. Inclusion was defined as patients 16 years or older with a radiologically confirmed non-union of the upper or lower limb long bones managed with surgical treatment alone between 2014–2019, with at least a 12 month follow up. Patients with bone defects or whose non-unions were treated with biological therapies were excluded from this study. The primary aim was assessed via the outcomes of union, time to union and RUST score.Introduction
Materials and Methods
The rate of fracture and subsequent nonunion after radiation therapy for soft-tissue sarcomas and bone tumors has been demonstrated to quite high. There is a paucity of data describing the optimal treatment for these nonunions. Free vascularized fibular grafts (FVFG) have been used successfully in the treatment of large segmental bone defects in the axial and appendicular skeleton, however, their efficacy with respect to treatment of radiated nonunions remains unclear. The purpose of the study was to assess the 1) union rate, 2) clinical outcomes, and 3) complications following FVFG for radiation-induced femoral fracture nonunions. We identified 24 patients who underwent FVFG for the treatment of radiation-induced femoral fracture nonunion between 1991 and 2015. Medical records were reviewed in order to determine oncologic diagnosis, total preoperative radiation dose, type of surgical treatment for the nonunion, clinical outcomes, and postoperative complications. There were 11 males and 13 females, with a mean age of 59 years (range, 29 – 78) and a mean follow-up duration of 61 months (range, 10 – 183 months). Three patients had a history of diabetes mellitus and three were current tobacco users at the time of FVFG. No patient was receiving chemotherapy during recovery from FVFG. Oncologic diagnoses included unspecified soft tissue sarcomas (n = 5), undifferentiated pleomorphic sarcoma (UPS) (n = 3), myxofibrosarcoma (n = 3), liposarcoma (n = 2), Ewing's sarcoma (n = 2), lymphoma (n = 2), hemangiopericytoma, leiomyosarcoma, multiple myeloma, myxoid chondrosarcoma, myxoid liposarcoma, neurofibrosarcoma, and renal cell carcinoma. Mean total radiation dose was 56.3 Gy (range, 39 – 72.5), given at a mean of 10.2 years prior to FVFG. The average FVFG length was 16.4 cm. In addition to FVFG, 13 patients underwent simultaneous autogenous iliac crest bone grafting, nine had other cancellous autografting, one received cancellous allograft, and three were treated with synthetic graft products. The FVFG was fixed as an onlay graft using lag screws in all cases, additional fixation was obtained with an intramedullary nail (n = 19), dynamic compression plate (n = 2), blade plate (n = 2), or lateral locking plate (n = 1). Nineteen (79%) fractures went on to union at a mean of 13.1 months (range, 4.8 – 28.1 months). Musculoskeletal Tumor Society scores improved from eight preoperatively to 22 at latest follow-up (p < 0.0001). Among the five fractures that failed to unite, two were converted to proximal femoral replacements (PFR), two remained stable pseudarthroses, and one was converted to a total hip arthroplasty. A 6th case did unite initially, however, subsequent failure lead to PFR. Seven patients (29%) required a second operative grafting. There were five additional complications including three infections, one wound dehiscence, and one screw fracture. No patient required amputation. Free vascularized fibular grafts are a reliable treatment option for radiation-induced pathologic femoral fracture nonunions, providing a union rate of 79%. Surgeons should remain cognizant, however, of the elevated rate of infectious complications and need for additional operative grafting procedures.
Treatment of infected and non-infected non-unions remain a major challenge after orthopedic fracture-related surgery. In clinical practice, several revision surgeries are usually required, including a radical debridement and exchange of implants, to control or even eradicate the infection to finally achieve bone healing. However, a clear treatment algorithm in clinical practice may be difficult to follow due to the heterogeneous patient population. Thus, so controlled settings for research purposes is better achieved in standardized animal studies. So far, there exists no multi-stage animal model that can be realistically transferred to the clinical situation in humans. The importance of such a model is obvious in order to be able to investigate different therapy concepts for infected and non-infected non unions. In 20 female Sprague-Dawley rats, a critical size defect by a femur osteotomy with 5 mm width was done. The periosteum at the fracture zone was cauterized proximal and distal to the osteotomy to achieve an hypovascularized situation. After randomization, 10 animals were intramedullary infected with a multisensible Staph. aureus strain (103 CFU). After 5 weeks, a second surgery was performed with removing the K-wire, debridement of the osteotomy-gap and re-osteosynthesis with an angle-stable plate. After further 8 weeks all rats were euthanized and underwent biomechanical testing to evaluate bone consolidation or delayed union, respectively. Additional micro-CT analysis, histological, and histomorphometric analysis were done to evaluate bone consolidation or delayed union, respectively, by the score of Lane and Sandhu and to quantify callus formation and the mineralized area of the callus.Aim
Methods
Polymicrobial infections are expected to complicate the treatment of bone and joint infections. Septic nonunions often occur after initial open fractures, which prophylactically receive broad-spectrum antibiotics. However, no data that describes frequencies of polymicrobial infections and pathogens evident in course of the treatment of septic nonunions is published. Therefore, this study aims at investigating the frequency and pathogen types in polymicrobial infections. Surgically treated Patients with long bone septic nonunion admitted between January 2010 and March 2018 were included in the study. Following parameters were examined: age, gender, American Society of Anesthesiologists (ASA) score, body mass index (BMI), and anatomical location of the infected nonunion. Microbiological culture data, polymerase-chain-reaction results of tissue samples, sonication, and joint fluid of the initial and follow-up revision surgeries were assessed. No exclusion criteria were determined.Introduction
Methods
This study aimed to investigate the role of quantitative histological
analysis in the diagnosis of fracture-related infection (FRI). The clinical features, microbiology culture results, and histological
analysis in 156 surgically treated nonunions were used to stratify
the likelihood of associated infection. There were 64 confirmed
infected nonunions (one or more confirmatory criteria: pus, sinus,
and bacterial growth in two or more samples), 66 aseptic nonunions
(no confirmatory criteria), and 26 possibly infected nonunions (pathogen
identified from a single specimen and no confirmatory criteria).
The histological inflammatory response was assessed by average neutrophil
polymorph (NPs) counts per high-power field (HPF) and compared with
the established diagnosis.Aims
Patients and Methods
Previous studies of primary internal fixation of infected non-unions have reported high failure rates. Local antibiotic carriers and coatings have been advocated to reduce infection around implants and allow bone healing. We evaluated the effect of a calcium sulphate/hydroxyapatite antibiotic-loaded composite on bone healing and the eradication of infection in combination with internal fixation. Twelve cases of established infected non-union, with segmental bone loss of up to 1cm were treated using a multidisciplinary protocol. This included; excision, deep sampling, stabilisation, local and systemic antibiotics, and soft-tissue closure. We treated 5 femurs, 4 humeri, 1 tibia and 2 periarticular non-unions at the ankle. Mean age was 59.8 years (34–75) and 9 patients had systemic co-morbidities (C-M Type B hosts). 9 patients had single stage surgery, with 5 IM Nails and 4 plates. Three patients had planned second stage internal fixation after external fixation to correct deformity. Staph. aureus was the commonest pathogen (5 cases) with polymicrobial infection in 3 cases.Aim
Method
Recently the evolution of prosthesis technology allows the surgeon to replace entire limbs. These special prostheses or megaprostheses were born for the treatment of severe oncological bone loss. Recently, however, the indications and applications of these devices are expanding to other orthopaedic and trauma situations. Since some years we are implanting megaprostheses in non-oncological conditions such as septic post-traumatic failures represented by complex non-unions and critical size bone defects. The purpose of this study is to retrospectively evaluate the clinical outcome of this treatment and register all the complications and infection recurrence. Between January 2008 and January 2016 we have treated 55 patients with septic post-traumatic bone defects In 48/55 cases we perform a 2 steps procedure: 1° step: resection, debridment, devices removal and antibiotic spacer implantation; 2° step: spacer removal and megaprosthesis implantation. In 7/55 patients in whom all the femur was infected, we performed a one step procedure by the complete removal of the femur and a megaprosthesis (Total Femur) implantation.INTRODUCTION
MATERIAL AND METHOD
Scaphoid non-union results the typical humpback deformity, pronation of the distal fragment, and a bone defect in the non-union site with shortening. Bone grafting, whether open or arthroscopic, relies on fluoroscopic and direct visual assessment of reduction. However, because of the bone defect and irregular geometry, it is difficult to determine the precise width of the bone gap and restore the original bone length, and to correct interfragmentary rotation. Correction of alignment can be performed by computer-assisted planning and intraoperative guidance. The use of computer navigation in guiding reduction in scaphoid non-unions and displaced fractures has not been reported. We propose a method of anatomical reconstruction in scaphoid non-union by computer-assisted preoperative planning combined with intraoperative computer navigation. This could be done in conjunction with a minimally invasive, arthroscopic bone grafting technique. A model consisting of a scaphoid bone with a simulated fracture, a forearm model, and an attached patient tracker was used. 2 titanium K-wires were inserted into the distal scaphoid fragment. 3D images were acquired and matched to those from a computed tomography (CT) scan. In an image processing software, the non-union was reduced and pin tracts were planned into the proximal fragment. The K-wires were driven into the proximal fragment under computer navigation. Reduction was assessed by direct measurement. These steps were repeated in a cadaveric upper limb. A scaphoid fracture was created and a patient tracker was inserted into the radial shaft. A post-fixation CT was obtained to assess reduction.Objective
Methods