Advertisement for orthosearch.org.uk
Results 1 - 20 of 122
Results per page:
Bone & Joint Open
Vol. 6, Issue 1 | Pages 82 - 92
14 Jan 2025
Ranieri R Borroni M Delle Rose G Conti M Garofalo R Castagna A

Aims

The aim of this study was to report long-term clinical outcomes of a modern convertible metal-backed glenoid (MBG) in total shoulder arthroplasty (TSA).

Methods

After a minimum of 15 years, a previously studied cohort of 35 patients who received a modern convertible MBG during the period 1996 to 2005 was contacted for clinical and radiological follow-up. At last follow-up, patients were evaluated radiologically and clinically according to the Constant Score, Simple Shoulder Test, and visual analogue scale for pain. Complications and revisions were recorded, and survival analysis was performed.


Aims. The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders. Methods. Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 10. 3. or 1 × 10. 6. colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 10. 3. or 1 × 10. 6. CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash. Results. The first part of the study showed that low-grade infection was more significant in 400 µm cylinders than cylinders with larger pore sizes (p < 0.05). The second part of the study showed that saline wash alone was ineffective in eradicating both low- and high-grade infections. Saline plus PVA-VAN/TOB-P eradicated the titanium cylinder-associated infections, as manifested by negative cultures of the washouts and supported by scanning electron microscopy and histology. Conclusion. Porous titanium cylinders were vulnerable to bacterial infection and biofilm formation that could not be treated by saline irrigation alone. Application of PVA-VAN/TOB-P directly into the surgical site alone or after saline wash represents a feasible approach for prevention and/or treatment of porous implant-related infections. Cite this article: Bone Joint Res 2024;13(11):622–631


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 18 - 18
19 Aug 2024
Sugano N Ando W Maeda Y Tamura K Uemura K Takashima K Hamada H
Full Access

In primary total hip arthroplasty (THA) for patients with Crowe II or higher classes developmental dysplasia of the hip (DDH) or rapidly destructive coxopathy (RDC), the placement of the cup can be challenging due to superior and lateral acetabular bone defects. Traditionally, bone grafts from resected femoral heads were used to fill these defects, but bulk graft poses a risk of collapse, especially in DDH with hypoplastic femoral heads or in RDC where good quality bone is scarce. Recently, porous metal augments have shown promising outcomes in revision surgeries, yet reports on their efficacy in primary THA are limited. This study retrospectively evaluated 27 patients (30 hips) who underwent primary THA using cementless cups and porous titanium acetabular augments for DDH or RDC, with follow-up periods ranging from 2 to 10 years (average 4.1 years). The cohort included 22 females (24 hips) and 5 males (6 hips), with an average age of 67 years at the time of surgery. The findings at the final follow-up showed no radiographic evidence of loosening or radiolucency around the cups and augments, indicating successful biological fixation in all cases. Clinically, there was a significant improvement in the WOMAC score from an average of 39.1±14.7 preoperatively to 5.1±6.4 postoperatively. These results suggest that the use of cementless cups and porous titanium acetabular augments in primary THA for DDH and RDC can lead to high levels of clinical improvement and reliable biological fixation, indicating their potential as a viable solution for managing challenging acetabular defects in these conditions


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 81 - 81
2 Jan 2024
Vautrin A Aw J Attenborough E Varga P
Full Access

Although 3D-printed porous dental implants may possess improved osseointegration potential, they must exhibit appropriate fatigue strength. Finite element analysis (FEA) has the potential to predict the fatigue life of implants and accelerate their development. This work aimed at developing and validating an FEA-based tool to predict the fatigue behavior of porous dental implants.

Test samples mimicking dental implants were designed as 4.5 mm-diameter cylinders with a fully porous section around bone level. Three porosity levels (50%, 60% and 70%) and two unit cell types (Schwarz Primitive (SP) and Schwarz W (SW)) were combined to generate six designs that were split between calibration (60SP, 70SP, 60SW, 70SW) and validation (50SP, 50SW) sets.

Twenty-eight samples per design were additively manufactured from titanium powder (Ti6Al4V). The samples were tested under bending compression loading (ISO 14801) monotonically (N=4/design) to determine ultimate load (Fult) (Instron 5866) and cyclically at six load levels between 50% and 10% of Fult (N=4/design/load level) (DYNA5dent). Failure force results were fitted to F/Fult = a(Nf)b (Eq1) with Nf being the number of cycles to failure, to identify parameters a and b. The endurance limit (Fe) was evaluated at Nf = 5M cycles. Finite element models were built to predict the yield load (Fyield) of each design. Combining a linear correlation between FEA-based Fyield and experimental Fult with equation Eq1 enabled FEA-based prediction of Fe.

For all designs, Fe was comprised between 10% (all four samples surviving) and 15% (at least one failure) of Fult. The FEA-based tool predicted Fe values of 11.7% and 12.0% of Fult for the validation sets of 50SP and 50SW, respectively. Thus, the developed FEA-based workflow could accurately predict endurance limit for different implant designs and therefore could be used in future to aid the development of novel porous implants.

Acknowledgements: This study was funded by EU's Horizon 2020 grant No. 953128 (I-SMarD). We gratefully acknowledge the expert advice of Prof. Philippe Zysset.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 59 - 59
2 Jan 2024
Depboylu F
Full Access

Production of porous titanium bone implants is a highly promising research and application area due to providing high osseointegration and achieving the desired mechanical properties. Production of controlled porosity in titanium implants is possible with laser powder bed fusion (L- PBF) technology. The main topics of this presentation includes the L-PBF process parameter optimization to manufacture thin walls of porous titanium structures with almost full density and good mechanical properties as well as good dimensional accuracy. Moreover, the cleaning and coating process of these structures to further increase osseointegration and then in-vitro biocompatibility will be covered


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 912 - 919
1 Aug 2023
Cunningham LJ Walton M Bale S Trail IA

Aims

Reverse total shoulder arthroplasty (rTSA) can be used in complex cases when the glenoid requires reconstruction. In this study, a baseplate with composite bone autograft and a central trabecular titanium peg was implanted, and its migration was assessed for two years postoperatively using radiostereometric analysis (RSA).

Methods

A total of 14 patients who underwent a rTSA with an autograft consented to participate. Of these, 11 had a primary rTSA using humeral head autograft and three had a revision rTSA with autograft harvested from the iliac crest. The mean age of the patients was 66 years (39 to 81). Tantalum beads were implanted in the scapula around the glenoid. RSA imaging (stereographic radiographs) was undertaken immediately postoperatively and at three, six, 12, and 24 months. Analysis was completed using model-based RSA software. Outcomes were collected preoperatively and at two years postoperatively, including the Oxford Shoulder Score, the American Shoulder and Elbow Score, and a visual analogue score for pain. A Constant score was also obtained for the assessment of strength and range of motion.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 74 - 74
23 Jun 2023
Wilson JM Maradit-Kremers H Abdel MP Berry DJ Mabry TM Pagnano MW Perry KI Sierra RJ Taunton MJ Trousdale RT Lewallen DG
Full Access

The last two decades have seen remarkable technological advances in total hip arthroplasty (THA) implant design. Porous ingrowth surfaces and highly crosslinked polyethylene (HXLPE) have been expected to dramatically improve implant survivorship. The purpose of the present study was to evaluate survival of contemporary cementless acetabular components following primary THA. 16,421 primary THAs performed for osteoarthritis between 2000 and 2019 were identified from our institutional total joint registry. Patients received one of 12 contemporary cementless acetabular designs with HXLPE liners. Components were grouped based on ingrowth surface into 4 categories: porous titanium (n=10,952, mean follow-up 5 years), porous tantalum (n=1223, mean follow-up 5 years), metal mesh (n=2680, mean follow-up 6.5 years), and hydroxyapatite (HA) coated (n=1566, mean follow-up 2.4 years). Kaplan-Meier analyses were performed to assess the survivorship free of acetabular revision. A historical series of 182 Harris-Galante-1 (HG-1) acetabular components was used as reference. The 15-year survivorship free of acetabular revision was >97% for all 4 contemporary cohorts. Compared to historical control, porous titanium (HR 0.06, 95% CI 0.02–0.17, p<0.001), porous tantalum (HR 0.09, 95%CI 0.03–0.29, p<0.001), metal mesh (HR 0.11, 95%CI 0.04–0.31, p<0.001), and HA-coated (HR 0.14, 95%CI 0.04–0.48, p=0.002) ingrowth surfaces had significantly lower risk of any acetabular revision. There were 16 cases (0.1%) of acetabular aseptic loosening that occurred in 8 (0.07%) porous titanium, 5 (0.2%) metal mesh, and 3 (0.2%) HA-coated acetabular components. 7 of the 8 porous titanium aseptic loosening cases occurred in one known problematic design. There were no cases of aseptic loosening in the porous tantalum group. Modern acetabular ingrowth surfaces and HXLPE liners have improved on historical results at the mid-term. Contemporary designs have extraordinarily high revision-free survivorship, and aseptic loosening is now a rare complication. At mid-term follow-up, survivorship of contemporary uncemented acetabular components is excellent and aseptic loosening occurs in a very small minority of patients


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 27 - 27
7 Jun 2023
Hothi H Henckel J Di Laura A Schlueter-Brust K Hart A
Full Access

3D printing is rapidly being adopted by manufacturers to produce orthopaedic implants. There is a risk however of structural defects which may impact mechanical integrity. There are also no established standards to guide the design of bone-facing porous structures, meaning that manufacturers may employ different approaches to this. Characterisation of these variables in final-production implants will help understanding of the impact of these on their clinical performance. We analysed 12 unused, final-production custom-made 3D printed acetabular cups that had been produced by 6 orthopaedic manufacturers. We performed high resolution micro-CT imaging of each cup to characterise the morphometric features of the porous layers: (1) the level of porosity, (2) pore size, (3) thickness of porous struts and (4) the depth of the porous layers. We then examined the internal cup structures to identify the presence of any defects and to characterise: (1) their total number, (2) volume, (3) sphericity, (4) size and (5) location. There was a variability between designs in the level of porosity (34% to 85%), pore size (0.74 to 1.87mm), strut thickness (0.28 to 0.65mm), and porous layer depth (0.57 to 11.51mm). One manufacturer printed different porous structures between the cup body and flanges; another manufacturer printed two differing porous regions within the cup body. 5 cups contained a median (range) of 90 (58–101) defects. The median defect volume was 5.17 (1.05–17.33) mm3. The median defect sphericity and size were 0.47 (0.19–0.65) and 0.64 (0.27–8.82) mm respectively. The defects were predominantly located adjacent to screw holes, within flanges and at the transition between the flange and main cup body; these were between 0.17 and 4.66mm from the cup surfaces. There is a wide variability between manufacturers in the porous titanium structures they 3D print. The size, shape and location of the structural defects identified are such that there may be an increased risk of crack initiation from them, potentially leading to a fracture. Regulators, surgeons, and manufacturers should be aware of this variability in final print quality


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 74 - 74
17 Apr 2023
Theodoridis K Hall T Munford M Van Arkel R
Full Access

The success of cementless orthopaedic implants relies on bony ingrowth and active bone remodelling. Much research effort is invested to develop implants with controllable surface roughness and internal porous architectures that encourage these biological processes. Evaluation of these implants requires long-term and costly animal studies, which do not always yield the desired outcome requiring iteration. The aim of our study is to develop a cost-effective method to prescreen design parameters prior to animal trials to streamline implant development and reduce live animal testing burden. Ex vivo porcine cancellous bone cylinders (n=6, Ø20×12mm) were extracted from porcine knee joints with a computer-numerically-controlled milling machine under sterile conditions within 4 hours of animal sacrifice. The bone discs were implanted with Ø6×12mm additive manufactured porous titanium implants and were then cultured for 21days. Half underwent static culture in medium (DMEM, 10% FBS, 1% antibiotics) at 37°C and 5% CO. 2. The rest were cultured in novel high-throughput stacked configuration in a bioreactor that simulated physiological conditions after surgery: the fluid flow and cyclic compression force were set at 10ml/min and 10–150 N (1Hz,5000 cycles/day) respectively. Stains were administered at days 7 and 14. Samples were evaluated with widefield microscopy, scanning electron microscopy (SEM) and with histology. More bone remodelling was observed on the samples cultured within the bioreactor: widefield imaging showed more remodelling at the boundaries between the implant-bone interface, while SEM revealed immature bone tissue integration within the pores of the implant. Histological analysis confirmed these results, with many more trabecular struts with new osteoid formation on the samples cultured dynamically compared to static ones. Ex vivo bone can be used to analyse new implant technologies with lower cost and ethical impact than animal trial. Physiological conditions (load and fluid flow) promoted bone ingrowth and remodelling


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 138 - 138
4 Apr 2023
Markel D Dietz P Wu B Bou-Akl T Ren W
Full Access

The efficacy of saline irrigation for the treatment of periprosthetic infection (PJI) is limited in the presence of infected implants. This study evaluated the efficacy of vancomycin/tobramycin-doped polyvinyl alcohol (PVA)/ceramic composites (PVA-VAN/TOB-P) after saline irrigation in a mouse pouch infection model. 3D printed porous titanium (Ti) cylinders (400, 700 and 100 µm in pore size) were implanted into mice pouches, then inoculated with S. aureus at the amounts of 1X10. 3. CFU and 1X10. 6. CFU per pouch, respectively. Mice were randomized into 4 groups (n=6 for each group): (1) no bacteria; (2) bacteria without saline wash; 3) saline wash only, and (4) saline wash+PVA-VAN/TOB-P. After seven days, pouches were washed out alone or with additional injection of 0.2 ml of PVA-VAN/TOB-P. Mice were sacrificed 14 days after pouch wash. Bacteria cultures of collected Ti cylinders and washout fluid and histology of pouch tissues were performed. The low-grade infection (1X10. 3. CFU) was more significant in 400 µm Ti cylinders than that in Ti cylinders with larger pore sizes (700 and 1000 µm (p<0.05). A similar pattern of high-grade infection (1X10. 6. CFU) was observed (p<0.05). For the end wash, the bacteria burden (0.49±0.02) in saline wash group was completely eradicated by the addition of PVA-VAN/TOB-P (0.005±0.001, p<0.05). We noticed that 400 µm Ti cylinders have the highest risk of implant infection. Our data supported that the effect of saline irrigation was very limited in the presence of contaminated porous Ti cylinders. PVA-VAN/TOB-P was biodegradable, biocompatible, and was effective in eradicating bacteria retention after saline irrigation in a mouse model of low grade and high-grade infection. We believe that PVA-VAN/TOB-P represents an alternative to reduce the risk of PJI by providing a sustained local delivery of antibiotics


Bone & Joint Open
Vol. 3, Issue 11 | Pages 867 - 876
10 Nov 2022
Winther SS Petersen M Yilmaz M Kaltoft NS Stürup J Winther NS

Aims

Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS).

Methods

Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)).


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1110 - 1117
12 Oct 2022
Wessling M Gebert C Hakenes T Dudda M Hardes J Frieler S Jeys LM Hanusrichter Y

Aims

The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants.

Methods

A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up.


The Bone & Joint Journal
Vol. 104-B, Issue 6 | Pages 647 - 656
1 Jun 2022
Knudsen MB Thillemann JK Jørgensen PB Jakobsen SS Daugaard H Søballe K Stilling M

Aims. BoneMaster is a thin electrochemically applied hydroxyapatite (HA) coating for orthopaedic implants that is quickly resorbed during osseointegration. Early stabilization is a surrogacy marker of good survival of femoral stems. The hypothesis of this study was that a BoneMaster coating yields a fast early and lasting fixation of stems. Methods. A total of 53 patients were randomized to be treated using Bi-Metric cementless femoral stems with either only a porous titanium plasma-sprayed coating (P group) or a porous titanium plasma-sprayed coating with an additional BoneMaster coating (PBM group). The patients were examined with radiostereometry until five years after surgery. Results. At three months, the mean total translation (TT) was 0.95 mm (95% confidence interval (CI) 0.68 to 1.22) in the P group and 0.57 mm (95% CI 0.31 to 0.83) in the PBM group (p = 0.047). From two to five years, the TT increased by a mean of 0.14 mm (95% CI 0.03 to 0.25) more in the P group than in the PBM group (p = 0.021). In osteopenic patients (n = 20), the mean TT after three months was 1.61 mm (95% CI 1.03 to 2.20) in the P group and 0.73 mm (95% CI 0.25 to 1.21) in the PBM group (p = 0.023). After 60 months, the mean TT in osteopenic patients was 1.87 mm (95% CI 1.24 to 2.50) in the P group and 0.82 mm (95% CI 0.30 to 1.33) in the PBM group (p = 0.011). Conclusion. There was less early and midterm migration of cementless stems with BoneMaster coating compared with those with only a porous titanium plasma-sprayed coating. Although a BoneMaster coating seems to be important for stem fixation, especially in osteopenic patients, further research is warranted. Cite this article: Bone Joint J 2022;104-B(6):647–656


Aims

Our objective was to conduct a systematic review and meta-analysis, to establish whether differences arise in clinical outcomes between autologous and synthetic bone grafts in the operative management of tibial plateau fractures.

Methods

A structured search of MEDLINE, EMBASE, the online archives of Bone & Joint Publishing, and CENTRAL databases from inception until 28 July 2021 was performed. Randomized, controlled, clinical trials that compared autologous and synthetic bone grafts in tibial plateau fractures were included. Preclinical studies, clinical studies in paediatric patients, pathological fractures, fracture nonunion, or chondral defects were excluded. Outcome data were assessed using the Risk of Bias 2 (ROB2) framework and synthesized in random-effect meta-analysis. The Preferred Reported Items for Systematic Review and Meta-Analyses guidance was followed throughout.


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 76 - 82
1 Jan 2022
ten Brinke B Hesseling B Eygendaal D Hoelen MA Mathijssen NMC

Aims

Stemless humeral implants have been developed to overcome stem-related complications in total shoulder arthroplasty (TSA). However, stemless implant designs may hypothetically result in less stable initial fixation, potentially affecting long-term survival. The aim of this study is to investigate early fixation and migration patterns of the stemless humeral component of the Simpliciti Shoulder System and to evaluate clinical outcomes.

Methods

In this prospective cohort study, radiostereometric analysis (RSA) radiographs were obtained in 24 patients at one day, six weeks, six months, one year, and two years postoperatively. Migration was calculated using model-based RSA. Clinical outcomes were evaluated using the visual analogue scale (VAS), the Oxford Shoulder Score (OSS), the Constant-Murley Score (CMS), and the Disabilities of the Arm, Shoulder and Hand (DASH) score.


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1206 - 1214
1 Jul 2021
Tsikandylakis G Mortensen KRL Gromov K Mohaddes M Malchau H Troelsen A

Aims

We aimed to investigate if the use of the largest possible cobalt-chromium head articulating with polyethylene acetabular inserts would increase the in vivo wear rate in total hip arthroplasty.

Methods

In a single-blinded randomized controlled trial, 96 patients (43 females), at a median age of 63 years (interquartile range (IQR) 57 to 69), were allocated to receive either the largest possible modular femoral head (36 mm to 44 mm) in the thinnest possible insert or a standard 32 mm head. All patients received a vitamin E-doped cross-linked polyethylene insert and a cobalt-chromium head. The primary outcome was proximal head penetration measured with radiostereometric analysis (RSA) at two years. Secondary outcomes were volumetric wear, periacetabular radiolucencies, and patient-reported outcomes.


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 135 - 144
1 Jul 2021
Kuyl E Shu F Sosa BR Lopez JD Qin D Pannellini T Ivashkiv LB Greenblatt MB Bostrom MPG Yang X

Aims

Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system’s response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of osseointegration failure was used to test the hypothesis that inhibition (through Pad4-/- mice that display defects in peptidyl arginine deiminase 4 (PAD4), an essential protein required for NETs) or resolution (via DNase 1 treatment, an enzyme that degrades the cytotoxic DNA matrix) of NETs can prevent osseointegration failure and formation of peri-implant fibrotic tissue.

Methods

Patient peri-implant fibrotic tissue was analyzed for NETs biomarkers. To enhance osseointegration in loose implant conditions, an innate immune system pathway (NETs) was either inhibited (Pad4-/- mice) or resolved with a pharmacological agent (DNase 1) in a murine model of osseointegration failure.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 11 - 11
1 Jun 2021
Munford M Jeffers J
Full Access

OSSTEC is a pre-spin-out venture at Imperial College London seeking industry feedback on our orthopaedic implants which maintain bone quality in the long term. Existing orthopaedic implants provide successful treatment for knee osteoarthritis, however, they cause loss of bone quality over time, leading to more dangerous and expensive revision surgeries and high implant failure rates in young patients. OSSTEC tibial implants stimulate healthy bone growth allowing simple primary revision surgery which will provide value for all stakeholders. This could allow existing orthopaedics manufacturers to capture high growth in existing and emerging markets while offering hospitals and surgeons a safer revision treatment for patients and a 35% annual saving on lifetime costs. For patients, our implant technology could mean additional years of quality life by revising patients to a primary TKA before full revision surgery. Our implants use patent-filed additive manufacturing technology to restore a healthy mechanical environment in the proximal tibia; stimulating long term bone growth. Proven benefits of this technology include increased bone formation and osseointegration, shown in an animal model, and restoration of native load transfer, shown in a human cadaveric model. This technology could help capture the large annual growth (24%) currently seen in the cementless knee reconstruction market, worth $1.2B. Furthermore, analysis suggests an additional market of currently untreated younger patients exists, worth £0.8B and growing by 18% annually. Making revision surgery and therefore treatment of younger patients easier would enable access to this market. We aim to offer improved patient treatment via B2B sales of implants to existing orthopaedic manufacturer partners, who would then provide them with instrumentation to hospitals and surgeons. Existing implant materials provide good options for patient treatments, however OSSTEC's porous titanium structures offer unique competitive advantages; combining options for modular design, cementless fixation, initial bone fixation and crucially long term bone maintenance. Speaking to surgeons across global markets shows that many surgeons are keen to pursue bone preserving surgeries and the use of porous implants. Furthermore, there is a growing demand to treat young patients (with 25% growth in patients younger than 65 over the past 10 years) and to use cementless knee treatments, where patient volume has doubled in the past 4 years and is following trends in hip treatments. Our team includes engineers and consultant surgeons who have experience developing multiple orthopaedic implants which have treated over 200,000 patients. To date we have raised £175,000 for the research and development of these implants and we hope to gain insight from industry professionals before further development towards our aim to begin trials for regulatory approval in 2026. OSSTEC implants provide a way to stimulate bone growth after surgery to reduce revision risk. We hope this could allow orthopaedic manufactures to explore high growth markets while meaning surgeons can treat younger patients in a cost effective way and add quality years to patients' lives


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 150 - 157
1 Jun 2021
Anderson LA Christie M Blackburn BE Mahan C Earl C Pelt CE Peters CL Gililland J

Aims

Porous metaphyseal cones can be used for fixation in revision total knee arthroplasty (rTKA) and complex TKAs. This metaphyseal fixation has led to some surgeons using shorter cemented stems instead of diaphyseal engaging cementless stems with a potential benefit of ease of obtaining proper alignment without being beholden to the diaphysis. The purpose of this study was to evaluate short term clinical and radiographic outcomes of a series of TKA cases performed using 3D-printed metaphyseal cones.

Methods

A retrospective review of 86 rTKAs and nine complex primary TKAs, with an average age of 63.2 years (SD 8.2) and BMI of 34.0 kg/m2 (SD 8.7), in which metaphyseal cones were used for both femoral and tibial fixation were compared for their knee alignment based on the type of stem used. Overall, 22 knees had cementless stems on both sides, 52 had cemented stems on both sides, and 15 had mixed stems. Postoperative long-standing radiographs were evaluated for coronal and sagittal plane alignment. Adjusted logistic regression models were run to assess malalignment hip-knee-ankle (HKA) alignment beyond ± 3° and sagittal alignment of the tibial and femoral components ± 3° by stem type.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 32 - 37
1 Jun 2021
Restrepo S Smith EB Hozack WJ

Aims

Cementless total knee arthroplasty (TKA) offers the potential for strong biological fixation compared with cemented TKA where fixation is achieved by the mechanical integration of the cement. Few mid-term results are available for newer cementless TKA designs, which have used additive manufacturing (3D printing). The aim of this study was to present mid-term clinical outcomes and implant survivorship of the cementless Stryker Triathlon Tritanium TKA.

Methods

This was a single institution registry review of prospectively gathered data from 341 cementless Triathlon Tritanium TKAs at four to 6.8 years follow-up. Outcomes were determined by comparing pre- and postoperative Knee Injury and Osteoarthritis Outcome Score for Joint Replacement (KOOS JR) scores, and pre- and postoperative 12-item Veterans RAND/Short Form Health Survey (VR/SF-12) scores. Aseptic loosening and revision for any reason were the endpoints which were used to determine survivorship at five years.