Aims. Adenosine, lidocaine, and Mg. 2+. (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery. Methods. Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed. Results. Despite comparable knee function, ALM-treated males had reduced systemic inflammation, synovial fluid angiogenic and
Mendelian randomization (MR) is considered to overcome the bias of observational studies, but there is no current meta-analysis of MR studies on rheumatoid arthritis (RA). The purpose of this study was to summarize the relationship between potential pathogenic factors and RA risk based on existing MR studies. PubMed, Web of Science, and Embase were searched for MR studies on influencing factors in relation to RA up to October 2022. Meta-analyses of MR studies assessing correlations between various potential pathogenic factors and RA were conducted. Random-effect and fixed-effect models were used to synthesize the odds ratios of various pathogenic factors and RA. The quality of the study was assessed using the Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization (STROBE-MR) guidelines.Aims
Methods
The aim of the study was to determine if there was a direct correlation between the pain and disability experienced by patients and size of their disc prolapse, measured by the disc’s cross-sectional area on T2 axial MRI scans. Patients were asked to prospectively complete visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores on the day of their MRI scan. All patients with primary disc herniation were included. Exclusion criteria included recurrent disc herniation, cauda equina syndrome, or any other associated spinal pathology. T2 weighted MRI scans were reviewed on picture archiving and communications software. The T2 axial image showing the disc protrusion with the largest cross sectional area was used for measurements. The area of the disc and canal were measured at this level. The size of the disc was measured as a percentage of the cross-sectional area of the spinal canal on the chosen image. The VAS leg pain and ODI scores were each correlated with the size of the disc using the Pearson correlation coefficient (PCC). Intraobserver reliability for MRI measurement was assessed using the interclass correlation coefficient (ICC). We assessed if the position of the disc prolapse (central, lateral recess, or foraminal) altered the symptoms described by the patient. The VAS and ODI scores from central and lateral recess disc prolapses were compared.Aims
Methods
Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis (OA). The gut microbiome is shown to be involved in OA. However, the effect of exercise on gut microbiome in PTOA remains elusive. A total of 18 eight-week Sprague-Dawley rats were assigned into three groups: Sham/sedentary (Sham/Sed), PTOA/sedentary (PTOA/Sed), and PTOA/treadmill-walking (PTOA/TW). PTOA model was induced by transection of the anterior cruciate ligament (ACLT) and the destabilization of the medial meniscus (DMM). Treadmill-walking (15 m/min, 30 min/d, five days/week for eight weeks) was employed in the PTOA/TW group. The response of cartilage, subchondral bone, serology, and gut microbiome and their correlations were assessed.Aims
Methods
The anterior cruciate ligament (ACL) is known to have a poor wound healing capacity, whereas other ligaments outside of the knee joint capsule such as the medial collateral ligament (MCL) apparently heal more easily. Plasmin has been identified as a major component in the synovial fluid that varies among patients. The aim of this study was to test whether plasmin, a component of synovial fluid, could be a main factor responsible for the poor wound healing capacity of the ACL. The effects of increasing concentrations of plasmin (0, 0.1, 1, 10, and 50 µg/ml) onto the wound closing speed (WCS) of primary ACL-derived ligamentocytes (ACL-LCs) were tested using wound scratch assay and time-lapse phase-contrast microscopy. Additionally, relative expression changes (quantitative PCR (qPCR)) of major LC-relevant genes and catabolic genes were investigated. The positive controls were 10% fetal calf serum (FCS) and platelet-derived growth factor (PDGF).Aims
Methods
Many Specific keywords were used to search electronic databases (EMBASE, PubMed, and Web of Science) for English-language literature published between 1995 and 2017.Objectives
Methods
Osteoarthritis (OA) is the most common form of arthritis, affecting approximately 15% of the human population. Recently, increased concentration of nitric oxide in serum and synovial fluid in patients with OA has been observed. However, the exact role of nitric oxide in the initiation of OA has not been elucidated. The aim of the present study was to investigate the role of nitric oxide in innate immune regulation during OA initiation in rats. Rat OA was induced by performing meniscectomy surgery while cartilage samples were collected 0, 7, and 14 days after surgery. Cartilage cytokine levels were determined by using enzyme-linked immunosorbent assay, while other proteins were assessed by using Western blotObjectives
Methods
Introduction. Knee osteoarthritis (OA) is a major contributor to disability in seniors and affecting millions of people around the world. Its main problem and the biggest factor in the disability of patients is pain. Pain renders patient inactive and develops lower extremity muscle wasting and worsens patient status adversely. However no radical solution existed until now. Recently I discovered a very valid manipulative technique (Squeeze-hold) for OA knee. This study presents the one-year follow-up data (three cases) by this treatment. Methods. Subjects. The subjects were three severe knee OA patients who had their data collected for 12 months after having a treatment. Treatment (squeeze-hold): The lower limb muscles (all muscles attached to the knee joint) were squeezed and held by hand. Each squeeze was performed in linear sequence all the way through the lower limbs. The squeezes were held for 20 seconds. This treatment was performed on a weekly basis. Evaluation: The conditions of the OA were evaluated using a Kellgren-Lawrence Grading Scale. Visual analogue scale as indicator of pain and Japanese Knee Osteoarthritis Measure as indicator of the activity restriction were recorded every month for a year. Results. In all three cases, OA knee pain and ADL were gradually improved by sustained once-a-week treatment. The daily activities were gradually increased. After a year, the pain passed approximately away. In case 1 and 2, a limitation in ROM did not show a marked improvement and joint contracture remained. Discussion. Squeeze-hold therapy that is approach to lower-limb muscles relieved OA knee pain. It is suggested by the fact that lower-limb muscles is responsible for the pain. And the physical activity of knee OA patient increases with decreasing pain effected by Squeeze-hold therapy. This increase in physical activity provides increase in joint movement and it lead to improve articular metabolism. Cyclical loading increases chondrocyte activity. Additionally, It inhibits the release of matrix metalloproteinase,
Summary. The ideal therapy for post-traumatic osteoarthritis (PTOA) must be mechanism-based and target multiple anabolic and catabolic pathways. Our results suggest an innovative combination of known pro-anabolic and anti-catabolic biologics to treat post-traumatic cartilage degeneration. Introduction. Untreated joint injuries can result in cartilage wear and the development of PTOA. Previous studies identified the mechanisms that may govern the progression to PTOA. Here we hypothesised that targeted biologic interventions combined based on the type/time of cellular responses may constitute an effective novel treatment algorithm to arrest PTOA. Methods. Eleven human donor normal tali, age 19–71 yo, from the Gift of Hope Organ & Tissue Donor Network were impacted using a 4mm cylindrical indenter with the impulse of 1N as discribed. 8mm cartilage explants (4mm impacted core + 4mm non-impacted adjacent ring) were removed from the joint and cultured for 14 days in 5% fetal bovine serum with or without selected biologics. Treatment groups consisted of 1) Impacted control (IC), 2) Un-impacted control (UIC); 3–5) Impaction + three combinations of BMP-7/OP-1 (100ng/ml), P188 (8 ug/ml) and tumor necrosis factor-α (TNF-α) antagonist (100ng/ml) defined as Combo1, Combo2, and Combo3. All treatments were administered according to previously reported post-injury cellular responses. Combo1: P188 administered at day 0 for 48hrs + BMP-7 administered at day 0 for 48hrs and at days 7–14 + anti-TNF-α administered at days 0–7; Combo2: All three agents administered at day 0 for 48hrs and anti-TNF-α and BMP-7 administered again at day 7 for 48hrs; Combo3: All agents administered simultaneously at day 0 for 48hrs. Tissue and media were collected on days 0, 2, 7, and 14 and analyzed for cell viability, Safranin O staining, and proteoglycan (PG) synthesis. Results. A single impact to articular cartilage resulted in cell death within the superficial layer of impacted region, which if untreated, expanded to the adjacent non-impacted area. It reduced cell viability by more than 2-fold (p<0.01) and triggered elevation of
Summary. Wear particles from joint replacements may result in loosening and periprosthetic osteolysis. Interference with systemic macrophage trafficking to the implant, modulation of macrophage phenotype from M1 to M2, and inhibition of NFκB may mitigate these adverse effects. Introduction. Joint replacement of the lower extremity is highly successful in alleviating pain, and improving ambulation and function. However, prosthetic byproducts of different materials, in sufficient amounts, may lead to loosening and periprosthetic osteolysis. Debris from polymers (such as polyethylene and PMMA), metals and ceramics are capable of inciting an adverse tissue reaction, which is orchestrated by cells of the monocyte/macrophage lineage. Three experimental approaches have been taken by our group to potentially mitigate the adverse biological sequela of particle disease. These include: 1) interfering with ongoing migration of monocyte/macrophages to the implant site by inhibiting the chemokine system 2) altering the functional activities of local macrophages by converting pro-inflammatory M1 macrophages to an anti-inflammatory pro-tissue healing M2 phenotype and 3) modulating the production and release of pro-inflammatory cytokines, chemokines and other potentially harmful factors by inhibiting the key transcription factor NFκB. Methods. First, a murine model of systemic trafficking of remotely infused macrophages to locally infused clinically relevant wear particles was established. After preliminary in vitro studies in which a key macrophage chemokine, MCP-1 was identified, blocking of this chemokine ligand-receptor axis using antagonists and knockouts was undertaken. Second, in vitro and in vivo studies were performed to convert M1 pro-inflammatory macrophages (associated with wear particles ± endotoxin) to an M2 alternative phenotype by the infusion of the anti-inflammatory cytokine Interleukin-4 (IL-4). Third, in vitro studies were undertaken in which activated macrophages were exposed to an NFκB decoy oligodeoxynucleotide (ODN), which interferes with the production of
Peri-prosthetic osteolysis and subsequent aseptic
loosening is the most common reason for revising total hip replacements.
Wear particles originating from the prosthetic components interact
with multiple cell types in the peri-prosthetic region resulting
in an inflammatory process that ultimately leads to peri-prosthetic
bone loss. These cells include macrophages, osteoclasts, osteoblasts
and fibroblasts. The majority of research in peri-prosthetic osteolysis
has concentrated on the role played by osteoclasts and macrophages.
The purpose of this review is to assess the role of the osteoblast
in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts
and contribute to the osteolytic process by two mechanisms. First,
particles and metallic ions have been shown to inhibit the osteoblast
in terms of its ability to secrete mineralised bone matrix, by reducing
calcium deposition, alkaline phosphatase activity and its ability
to proliferate. Secondly, particles and metallic ions have been
shown to stimulate osteoblasts to produce pro inflammatory mediators Cite this article:
Between 2002 and 2008, 130 consecutive ankles were replaced with an hydroxyapatite (HA) and titanium-HA-coated Ankle Evolutive System total ankle prosthesis. Plain radiographs were analysed by two independent observers. Osteolytic lesions were classified by their size and location, with cavities >
10 mm in diameter considered to be ‘marked’. CT scanning was undertaken in all patients with marked osteolysis seen on the plain radiographs. Osteolytic lesions were seen on the plain films in 48 (37%) and marked lesions in 27 (21%) ankles. The risk for osteolysis was found to be 3.1 (95% confidence interval 1.6 to 5.9) times higher with implants with Ti-HA porous coating. Care should be taken with ankle arthroplasty until more is known about the reasons for these severe osteolyses.
The pathophysiology of intervertebral disc degeneration has been extensively studied. Various factors have been suggested as influencing its aetiology, including mechanical factors, such as compressive loading, shear stress and vibration, as well as ageing, genetic, systemic and toxic factors, which can lead to degeneration of the disc through biochemical reactions. How are these factors linked? What is their individual importance? There is no clear evidence indicating whether ageing in the presence of repetitive injury or repetitive injury in the absence of ageing plays a greater role in the degenerative process. Mechanical factors can trigger biochemical reactions which, in turn, may promote the normal biological changes of ageing, which can also be accelerated by genetic factors. Degradation of the molecular structure of the disc during ageing renders it more susceptible to superimposed mechanical injuries. This review supports the theory that degeneration of the disc has a complex multifactorial aetiology. Which factors initiate the events in the degenerative cascade is a question that remains unanswered, but most evidence points to an age-related process influenced primarily by mechanical and genetic factors.
Post-traumatic arthritis is a frequent consequence of articular fracture. The mechanisms leading to its development after such injuries have not been clearly delineated. A potential contributing factor is decreased viability of the articular chondrocytes. The object of this study was to characterise the regional variation in the viability of chondrocytes following joint trauma. A total of 29 osteochondral fragments from traumatic injuries to joints that could not be used in articular reconstruction were analysed for cell viability using the fluorescence live/dead assay and for apoptosis employing the TUNEL assay, and compared with cadaver control fragments. Chondrocyte death and apoptosis were significantly greater along the edge of the fracture and in the superficial zone of the osteochondral fragments. The middle and deep zones demonstrated significantly higher viability of the chondrocytes. These findings indicate the presence of both necrotic and apoptotic chondrocytes after joint injury and may provide further insight into the role of chondrocyte death in post-traumatic arthritis.
The anatomical studies, basic to our understanding of lumbar spine innervation through the sinu-vertebral nerves, are reviewed. Research in the 1980s suggested that pain sensation was conducted in part via the sympathetic system. These sensory pathways have now been clarified using sophisticated experimental and histochemical techniques confirming a dual pattern. One route enters the adjacent dorsal root segmentally, whereas the other supply is non-segmental ascending through the paravertebral sympathetic chain with re-entry through the thoracolumbar white rami communicantes. Sensory nerve endings in the degenerative lumbar disc penetrate deep into the disrupted nucleus pulposus, insensitive in the normal lumbar spine. Complex as well as free nerve endings would appear to contribute to pain transmission. The nature and mechanism of discogenic pain is still speculative but there is growing evidence to support a ‘visceral pain’ hypothesis, unique in the muscloskeletal system. This mechanism is open to ‘peripheral sensitisation’ and possibly ‘central sensitisation’ as a potential cause of chronic back pain.
Systemic factors are believed to be pivotal for the development of heterotopic ossification in severely-injured patients. In this study, cell cultures of putative target cells (human fibroblastic cells, osteoblastic cells (MG-63), and bone-marrow stromal cells (hBM)) were incubated with serum from ten consecutive polytraumatised patients taken from post-traumatic day 1 to day 21 and with serum from 12 healthy control subjects. The serum from the polytraumatised patients significantly stimulated the proliferation of fibroblasts, MG-63 and of hBM cells. The activity of alkaline phosphatase in MG-63 and hBM cells was significantly decreased when exposed to the serum of the severely-injured patient. After three weeks in 3D cell cultures, matrix production and osteogenic gene expression of hBM cells were equal in the patient and control groups. However, the serum from the polytraumatised patients significantly decreased apoptosis of hBM cells compared with the control serum (4.3% Increased proliferation of osteoblastic cells and reduced apoptosis of osteoprogenitors may be responsible for increased osteogenesis in severely-injured patients.
Introduction: Patients with multiple skeletal injuries are susceptible to Systemic Inflammatory Response Syndrome (SIRS) and consequently Acute Respiratory Distress Syndrome (ARDS). Fracture haematoma contains
Recently there has been considerable interest in the role of inflammatory mediator production by herniated degenerate discs. Modic has described MR endplate changes which have an inflammatory appearance and have been linked with discogenic back pain. To date there has been no biomechanical investigation of discs with associated Modic changes. The aim of this study is to determine if degenerate discs with associated Modic changes have higher levels of
Degenerate disc disease is a major cause of low back pain, yet its aetiology is still poorly understood. The intervertebral disc is the largest avascular structure in the body. Cells of the nucleus pulposus, therefore, rely on diffusion of oxygen &
nutrients down concentration gradients from peripheral vessels in the cartilage end-plates. Thus, there is a low oxygen tension and cellular respiration is largely anaerobic. The purpose of this study was to examine the effects of inflammation, hypoxia and acidosis on degeneration and
The role of nucleus pulposus (NP) biology in the genesis of sciatica is being increasingly investigated. The aim of this study was to examine the ability of control and degenerate human nucleus pulposus to respond to an exogenous pro-inflammatory stimulus. Control disc material was obtained from surgical procedures for scoliosis and degenerate disc tissue from surgical procedures for sciatica and low back pain. Disc specimens were cultured using a serumless technique under basal and lipopolysaccharride (LPS) stimulated conditions and the media harvested, aliquoted and stored at –80°C for subsequent analysis. Levels of IL-1β,TNFα, LTB4, GM-CSF, IL-6, IL-8, MCP-1, PGE2, bFGF and TGFβ-1 in the media were estimated using commercially available enzyme linked immunoabsorbent assay kits. Neither basal nor LPS stimulated control or degenerate NP produced detectable levels of IL-1β, TNFα, LTB4 or GM-CSF. Control disc IL-8 secretion increased significantly with LPS stimulation, p<
.018. Degenerate disc IL-6, IL-8 and PGE2 production increased significantly with LPS stimulation, p<
.01, p<
.001 and p<
.005 respectively. LPS stimulated degenerate NP secreted significantly more IL-6, IL-8 and PGE2 than LPS stimulated control NP, p <
0.05, 0.02 and 0.003 respectively. LPS induces an increase in both control and degenerate NP mediator production demonstrating the ability of human NP to react to a noxious stimulus by producing