Advertisement for orthosearch.org.uk
Results 1 - 20 of 160
Results per page:
The Bone & Joint Journal
Vol. 107-B, Issue 1 | Pages 81 - 88
1 Jan 2025
Rele S Shadbolt C Schilling C Thuraisingam S Trieu J Choong ELP Gould D Taylor NF Dowsey MM Choong PFM

Aims

The Clavien-Dindo (CD) classification and Comprehensive Complication Index (CCI) have been validated primarily among general surgical procedures. To date, the validity of these measures has not been assessed in patients undergoing arthroplasty.

Methods

This retrospective cohort study included patients undergoing primary total hip and knee arthroplasty between April 2013 and December 2019. Complications within 90 days of surgery were graded using the CD classification and converted to CCI. Validity was established by assessing the association between both measures and discharge to inpatient rehabilitation, length of stay, and costs.


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1451 - 1460
1 Dec 2024
Mandalia K Le Breton S Roche C Shah SS

Aims

A recent study used the RAND Corporation at University of California, Los Angeles (RAND/UCLA) method to develop anatomical total shoulder arthroplasty (aTSA) appropriateness criteria. The purpose of our study was to determine how patient-reported outcome measures (PROMs) vary based on appropriateness.

Methods

Clinical data from a multicentre database identified patients who underwent primary aTSA from November 2004 to January 2023. A total of 390 patients (mean follow-up 48.1 months (SD 42.0)) were included: 97 (24.9%) were classified as appropriate, 218 (55.9%) inconclusive, and 75 (19.2%) inappropriate. Patients were classified as “appropriate”, “inconclusive”, or “inappropriate”, using a modified version of an appropriateness algorithm, which accounted for age, rotator cuff status, mobility, symptomatology, and Walch classification. Multiple pre- and postoperative scores were analyzed using Pearson’s chi-squared test and one-way analysis of variance (ANOVA). Postoperative complications were also analyzed.


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1363 - 1368
1 Dec 2024
Chen DB Wood JA Griffiths-Jones W Bellemans J Haddad FS MacDessi SJ

As advancements in total knee arthroplasty progress at an exciting pace, two areas are of special interest, as they directly impact implant design and surgical decision making. Knee morphometry considers the three-dimensional shape of the articulating surfaces within the knee joint, and knee phenotyping provides the ability to categorize alignment into practical groupings that can be used in both clinical and research settings. This annotation discusses the details of these concepts, and the ways in which they are helping us better understand the individual subtleties of each patient’s knee.

Cite this article: Bone Joint J 2024;106-B(12):1363–1368.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1263 - 1272
1 Nov 2024
Amador IE Hao KA Buchanan TR Damrow DS Hones KM Simcox T Schoch BS Farmer KW Wright TW LaMonica TJ King JJ Wright JO

Aims

We sought to compare functional outcomes and survival between non-smokers, former smokers, and current smokers who underwent anatomical total shoulder arthroplasty (aTSA) in a large cohort of patients.

Methods

A retrospective review of a prospectively collected shoulder arthroplasty database was performed between August 1991 and September 2020 to identify patients who underwent primary aTSA. Patients were excluded for preoperative diagnoses of fracture, infection, or oncological disease. Three cohorts were created based on smoking status: non-smokers, former smokers, and current smokers. Outcome scores (American Shoulder and Elbow Surgeons (ASES), Constant-Murley score, Shoulder Pain and Disability Index (SPADI), Simple Shoulder Test (SST), University of California, Los Angeles activity scale (UCLA)), range of motion (external rotation (ER), forward elevation (FE), internal rotation, abduction), and shoulder strength (ER, FE) evaluated at two- to four-year follow-up were compared between cohorts. Evaluation of revision-free survival was performed using the Kaplan-Meier method to final follow-up.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 90 - 90
19 Aug 2024
Sakai T Kaneoka T Okazaki T Matsuki Y Kawakami T Yamazaki K Imagama T
Full Access

Recently, some smart media devices including portable accelerometers have been used to measure objective physical activity (OPA) after total hip arthroplasty (THA). The aim of this study was to longitudinally assess OPA changes in patients who underwent THA using a compact triaxial accelerometer and to investigate the impact of this recovery process on patient-reported outcomes. This prospective cohort study involved 163 consecutive patients who had unilateral osteoarthritis of the hip and were followed up for 12 months after THA. There were 132 women and 31 men with average age of 66 years. OPA was measured using a compact triaxial accelerometer preoperatively and at 1, 3, 6, and 12 months postoperatively. This study investigated the recovery process of OPA in four patient groups classified by the median of age and preoperative activity levels (younger and higher activity (YH), younger and lower activity (YL), older and higher activity (OH), and older and lower activity (OL)), and examined its impact on patient-reported outcomes, including forgotten joint score-12 (FJS-12). The target period for regaining preoperative activity levels was approximately 3 months for patients with lower preoperative activity, and about 6 months for those with higher preoperative activity. The OPA at 12 months postoperatively was higher in the patients with higher preoperative activity levels than in those with lower preoperative activity levels. In patients with higher preoperative activity levels, FJS-12 scores significantly increased between 6 and 12 months postoperatively (p=0.018). FJS-12 at 12 months postoperatively was best in YH (81.7±18.9), followed by YL (73.5±22.9), OH (73.2±17.4), and OL (66.3±21.8). Differences in the recovery process of postoperative activity levels impacted the duration required for improvement in FJS-12 scores. These results can serve as indicators for setting activity goals in patients undergoing THA


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 303 - 306
1 Apr 2024
Staats K Kayani B Haddad FS


Bone & Joint Open
Vol. 5, Issue 3 | Pages 184 - 201
7 Mar 2024
Achten J Marques EMR Pinedo-Villanueva R Whitehouse MR Eardley WGP Costa ML Kearney RS Keene DJ Griffin XL

Aims

Ankle fracture is one of the most common musculoskeletal injuries sustained in the UK. Many patients experience pain and physical impairment, with the consequences of the fracture and its management lasting for several months or even years. The broad aim of ankle fracture treatment is to maintain the alignment of the joint while the fracture heals, and to reduce the risks of problems, such as stiffness. More severe injuries to the ankle are routinely treated surgically. However, even with advances in surgery, there remains a risk of complications; for patients experiencing these, the associated loss of function and quality of life (Qol) is considerable. Non-surgical treatment is an alternative to surgery and involves applying a cast carefully shaped to the patient’s ankle to correct and maintain alignment of the joint with the key benefit being a reduction in the frequency of common complications of surgery. The main potential risk of non-surgical treatment is a loss of alignment with a consequent reduction in ankle function. This study aims to determine whether ankle function, four months after treatment, in patients with unstable ankle fractures treated with close contact casting is not worse than in those treated with surgical intervention, which is the current standard of care.

Methods

This trial is a pragmatic, multicentre, randomized non-inferiority clinical trial with an embedded pilot, and with 12 months clinical follow-up and parallel economic analysis. A surveillance study using routinely collected data will be performed annually to five years post-treatment. Adult patients, aged 60 years and younger, with unstable ankle fractures will be identified in daily trauma meetings and fracture clinics and approached for recruitment prior to their treatment. Treatments will be performed in trauma units across the UK by a wide range of surgeons. Details of the surgical treatment, including how the operation is done, implant choice, and the recovery programme afterwards, will be at the discretion of the treating surgeon. The non-surgical treatment will be close-contact casting performed under anaesthetic, a technique which has gained in popularity since the publication of the Ankle Injury Management (AIM) trial. In all, 890 participants (445 per group) will be randomly allocated to surgical or non-surgical treatment. Data regarding ankle function, QoL, complications, and healthcare-related costs will be collected at eight weeks, four and 12 months, and then annually for five years following treatment. The primary outcome measure is patient-reported ankle function at four months from treatment.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 117 - 122
9 Feb 2024
Chaturvedi A Russell H Farrugia M Roger M Putti A Jenkins PJ Feltbower S

Aims

Occult (clinical) injuries represent 15% of all scaphoid fractures, posing significant challenges to the clinician. MRI has been suggested as the gold standard for diagnosis, but remains expensive, time-consuming, and is in high demand. Conventional management with immobilization and serial radiography typically results in multiple follow-up attendances to clinic, radiation exposure, and delays return to work. Suboptimal management can result in significant disability and, frequently, litigation.

Methods

We present a service evaluation report following the introduction of a quality-improvement themed, streamlined, clinical scaphoid pathway. Patients are offered a removable wrist splint with verbal and written instructions to remove it two weeks following injury, for self-assessment. The persistence of pain is the patient’s guide to ‘opt-in’ and to self-refer for a follow-up appointment with a senior emergency physician. On confirmation of ongoing signs of clinical scaphoid injury, an urgent outpatient ‘fast’-wrist protocol MRI scan is ordered, with instructions to maintain wrist immobilization. Patients with positive scan results are referred for specialist orthopaedic assessment via a virtual fracture clinic.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 45 - 45
2 Jan 2024
Gilsing R Hoogeveen M Boers H van der Weegen W
Full Access

Knee swelling is common after injury or surgery, resulting in pain, restricted range of movement and limited mobility. Accurately measuring knee swelling is critical to assess recovery. However, current measurement methods are either unreliable or expensive [1,2]. Therefore, a new measurement method is developed. This wearable (the ‘smart brace’) has shown the ability to distinguish a swollen knee from a not swollen knee using multi-frequency-bio impedance analysis (MF-BIA) [3]. This study aimed to determine the accuracy of this smart brace. The study involved 25 usable measurements on patients treated for unilateral knee osteoartritis with a 5mL injection of Lidocaïne + DepoMedrol (1:4). MF-BIA measurements were taken before and after the injection, both on the treated and untreated knee. The smart brace accurately measured the effect of the injection by a decrease in resistance of up to 2.6% at 100kHz (p<0.01), where commonly used gel electrodes were unable to measure the relative difference. Remarkably, both the smart brace and gel electrodes showed a time component in the MF-BIA measurements. To further investigate this time component, 10 participants were asked to lie down for 30 minutes, with measurements taken every 3 minutes using both gel electrodes and the smart brace on both legs. The relative change between each time step was calculated to determine changes over time. The results showed presence of a physiological aspect (settling of knee fluids), and for the brace also a mechanical aspect (skin-electrode interface) [4]. The mechanical aspect mainly interfered with reactance values. Overall, the smart brace is a feasible method for quantitatively measuring knee swelling as a relative change over time. However, the skin-electrode interface should be improved for reliable measurements at different moments in time. The findings suggest that the smart brace could be a promising tool for monitoring knee swelling during rehabilitation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 114 - 114
2 Jan 2024
Maglio M Tschon M Sartori M Martini L Rocchi M Dallari D Giavaresi G Fini M
Full Access

The use of implant biomaterials for prosthetic reconstructive surgery and osteosynthesis is consolidated in the orthopaedic field, improving the quality of life of patients and allowing for healthy and better ageing. However, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials, particularly for the study of local effects of implant and osteointegration. Despite the complex process of osseointegration is difficult to recreate in vitro, the growing challenges in developing alternative models require to set-up and validate new approaches. Aim of the present study is to evaluate an advanced in vitro tissue culture model of osteointegration of titanium implants in human trabecular bone. Cubic samples (1.5×1.5 cm) of trabecular bone were harvested as waste material from hip arthroplasty surgery (CE AVEC 829/2019/Sper/IOR); cylindrical defects (2 mm Ø, 6 mm length) were created, and tissue specimens assigned to the following groups: 1) empty defects- CTR-; 2) defects implanted with a cytotoxic copper pin (Merck cod. 326429)- CTR+; 3) defects implanted with standard titanium pins of 6 µm-rough (ZARE S.r.l) -Ti6. Tissue specimens were cultured in mini rotating bioreactors in standard conditions, weekly assessing viability. At the 8-week-timepoint, immunoenzymatic, microtomographic, histological and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, differently from Ti6 which appears to have a trophic effect on the bone. MicroCT and histological analysis supported the results, with lower BV/TV and Tb.Th values observed in CTR- compared to CTR+ and Ti6 and signs of matrix and bone deposition at the implant site. The collected data suggest the reliability of the tested model which can recreate the osseointegration process in vitro and can therefore be used for preliminary evaluations to reduce and refine in vivo preclinical models. Acknowledgment: This work was supported by Emilia-Romagna Region for the project “Sviluppo di modelli biologici in vitro ed in silico per la valutazione e predizione dell'osteointegrazione di dispositivi medici da impianto nel tessuto osseo”


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 19 - 19
2 Jan 2024
Li R Zheng J Smith P Chen X
Full Access

Device-associated bacterial infections are a major and costly clinical challenge. This project aimed to develop a smart new biomaterial for implants that helps to protect against infection and inflammation, promote bone growth, and is biodegradable. Gallium (Ga) doped strontium-phosphate was coated on pure Magnesium (Mg) through a chemical conversion process. Mg was distributed in a graduated manner throughout the strontium-phosphate coating GaSrPO4, with a compact structure and a Ga-rich surface. We tested this sample for its biocompatibility, effects on bone remodeling and antibacterial activities including Staphylococcus aureus, S. epidermidis and E. coli - key strains causing infection and early failure of the surgical implantations in orthopaedics and trauma. Ga was distributed in a gradient way throughout the entire strontium-phosphate coating with a compact structure and a gallium-rich surface. The GaSrPO4 coating protected the underlying Mg from substantial degradation in minimal essential media at physiological conditions over 9 days. The liberated Ga ions from the coatings upon Mg specimens inhibited the growth of bacterial tested. The Ga dopants showed minimal interferences with the SrPO4 based coating, which boosted osteoblasts and undermined osteoclasts in in vitro co-cultures model. The results evidenced this new material may be further translated to preclinical trial in large animal model and towards clinical trial. Acknowledgements: Authors are grateful to the financial support from the Australian Research Council through the Linkage Scheme (ARC LP150100343). The authors acknowledge the facilities, and the scientific and technical assistance of the RMIT University and John Curtin School of Medical Research, Australian National University


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 130 - 130
2 Jan 2024
Ergene E Liman G Demirel G Yilgor P
Full Access

Skeletal muscle tissue engineering has made progress towards production of functional tissues in line with the development in materials science and fabrication techniques. In particular, combining the specificity of 3D printing with smart materials has introduced a new concept called the 4D printing. Inspired by the unique properties of smart/responsive materials, we designed a bioink made of gelatin, a polymer with well-known cell compatibility, to be 3D printed on a magnetically responsive substrate. Gelatin was made photocrosslinkable by the methacrylate reaction (GELMA), and its viscosity was finetuned by blending with alginate which was later removed by alginate lyase treatment, so that the printability of the bioink as well as the cell viability can be finetuned. C2C12 mouse myoblasts-laden bioink was then 3D printed on a magnetic substrate for 4D shape-shifting. The magnetic substrate was produced using silicon rubber (EcoFlex) and carbonyl iron powders. After 3D printing, the bioink was crosslinked on the substrate, and the substrate was rolled with the help of a permanent magnet. Unrolled (Open) samples were used as the control group. The stiffness of the bioink matrix was found to be in the range of 13–45 kPa, which is the appropriate value for the adhesion of C2C12 cells. In the cell viability analysis, it was observed that the cells survived and could proliferate within the 7-day duration of the experiment. As a result of the immunofluorescence test, compared to the Open Group, more cell nuclei were observed overlapping MyoD1 expression in the Rolled Group; this indicated that the cells in these samples had more cell-cell interactions and therefore tended to form more myotubes. Acknowledgements: This research was supported by the TÜBİTAK 2211-A and YÖK 100/2000 scholarship programs


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 119 - 119
2 Jan 2024
Tryfonidou M
Full Access

Tryfonidou leads the Horizon 2020 consortium (iPSpine; 2019–2023) bringing a transdisciplinary team of 21 partners together to address the challenges and bottlenecks of iPS-based advanced therapies towards their transition to the clinic. Here, chronic back pain due to intervertebral disc degeneration is employed as a show case. The project develops the iPS-technology and designed smart biomaterials to carry, protect and instruct the iPS cells within the degenerate disc environment. This work will be presented including ongoing activities focus on translating the developed methodology and tools towards clinically relevant animal models. The consortium optimized the protocol for the differentiated iPS-notochordal-like cells (iPS-NLCs) and shortlisted two biomaterials shortlisted based on their physicochemical, cytotoxicity, biomechanical and biocompatibility testing. Both were shown to be safe and have been tested with the progenitors of iPS-NLCs. An advanced platform (e.g., the dynamic loading bioreactor for disc tissue) was used to evaluate their performance: the biomaterials supported the iPS-NLC progenitors after injection into the degenerate disc and seem to also support their maturation towards NLCs. Furthermore, we confirmed the capacity of these cells to survive inside degenerated discs at 30 days upon injection in sheep, whereafter we continued with their evaluation at 3 months post-injection. We achieved full evaluation of the sheep spines, including biomechanical analysis using the portable spine biomechanics tester prior analysis at the macro- and microscopic, and biochemical level


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 11 - 11
17 Nov 2023
Wahdan Q Solanke F Komperla S Edmonds C Amos L Yap RY Neal A Mallinder N Tomlinson JE Jayasuriya R
Full Access

Abstract. INTRODUCTION. In the NHS the structure of a “regular healthcare team” is no longer the case. The NHS is facing a workforce crisis where cross-covering of ward-based health professionals is at an all-time high, this includes nurses, doctors, therapists, pharmacists and clerks. Comprehensive post-operative care documentation is essential to maintain patient safety, reduce information clarification requests, delays in rehabilitation, treatment, and investigations. The value of complete surgical registry data is emerging, and in the UK this has recently become mandated, but the completeness of post-operative care documentation is not held to the same importance, and at present there is no published standard. This project summarises a 4-stage approach, including 6 audit cycles, >400 reviewed operation notes, over a 5 year period. OBJECTIVE. To deliver a sustainable change in post operative care documentation practices through quality improvement frameworks. METHODS. Stage 1: Characterise the problem and increase engagement through: SMART aims, process mapping, hybrid action-effect and driver diagram and stakeholder analysis. Multi disciplinary stakeholders were involved in achieving a consensus of evidence-based auditable criteria. Stage 2: Baseline audit to assess current practice. Stage 3: Intervention planning by stakeholders. Stage 4: Longitudinal monitoring through run charts and iterative refinement. RESULTS. Stage 1: Process mapping identified numerous downstream effects of the absence of critical information from operation notes, and the action-effect diagram highlighted the multiple unnecessary mitigating actions performed by ward staff. An MDT consensus was achieved on 15 essential criteria for complete documentation, including important negative fields. Interest-influence matrix identified stakeholder groups with high influence but low interest who needed engagement to deliver change. Stage 2: Baseline audit demonstrated unexpectedly poor documentation: >75% compliance in 4 criteria, and <50% compliance in 10 criteria, which elevated the interest of key stakeholders. Stage 3: A post-operative care template based on the 15 criteria was embedded within the existing IT software. It allowed use of existing operative templates, with a non-overwriting suffix requiring only two mouse clicks. Stage 4: Re-audit at 3 and 12 months showed improved and sustained compliance. At 24 months compliance had declined. Questionnaire of template usage identified problems of criteria response options, and lack of awareness of template by newly appointed staff. Template update improved compliance over the next 6 months (>75% compliance in 11 criteria). Finally, a further reaudit conducted 12 months after the template update (5 years post baseline audit) showed a sustained improvement in compliance (>75% compliance in 13 criteria). CONCLUSIONS. Simple innovation through quality improvement frameworks has changed documentation practices by 1) achieving a consensus from stakeholders, 2) a “shock and awe” moment to highlight existing poor documentation and increase engagement 3) implementing change which fit easily into existing systems, 4) respecting autonomy rather than enforcing change and 5) longitudinal monitoring using run charts and an iterative process to ensure the template remains fit for purpose. This model has now successfully been translated to other subspecialities within the orthopaedic department. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint Open
Vol. 4, Issue 9 | Pages 696 - 703
11 Sep 2023
Ormond MJ Clement ND Harder BG Farrow L Glester A

Aims

The principles of evidence-based medicine (EBM) are the foundation of modern medical practice. Surgeons are familiar with the commonly used statistical techniques to test hypotheses, summarize findings, and provide answers within a specified range of probability. Based on this knowledge, they are able to critically evaluate research before deciding whether or not to adopt the findings into practice. Recently, there has been an increased use of artificial intelligence (AI) to analyze information and derive findings in orthopaedic research. These techniques use a set of statistical tools that are increasingly complex and may be unfamiliar to the orthopaedic surgeon. It is unclear if this shift towards less familiar techniques is widely accepted in the orthopaedic community. This study aimed to provide an exploration of understanding and acceptance of AI use in research among orthopaedic surgeons.

Methods

Semi-structured in-depth interviews were carried out on a sample of 12 orthopaedic surgeons. Inductive thematic analysis was used to identify key themes.


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims

Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model.

Methods

A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed.


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 668 - 678
1 Jun 2023
Friedman RJ Boettcher ML Grey S Flurin P Wright TW Zuckerman JD Eichinger JK Roche C

Aims

The aim of this study was to longitudinally compare the clinical and radiological outcomes of anatomical total shoulder arthroplasty (aTSA) up to long-term follow-up, when using cemented keel, cemented peg, and hybrid cage peg glenoid components and the same humeral system.

Methods

We retrospectively analyzed a multicentre, international clinical database of a single platform shoulder system to compare the short-, mid-, and long-term clinical outcomes associated with three designs of aTSA glenoid components: 294 cemented keel, 527 cemented peg, and 981 hybrid cage glenoids. Outcomes were evaluated at 4,746 postoperative timepoints for 1,802 primary aTSA, with a mean follow-up of 65 months (24 to 217).


Bone & Joint Open
Vol. 4, Issue 5 | Pages 363 - 369
22 May 2023
Amen J Perkins O Cadwgan J Cooke SJ Kafchitsas K Kokkinakis M

Aims. Reimers migration percentage (MP) is a key measure to inform decision-making around the management of hip displacement in cerebral palsy (CP). The aim of this study is to assess validity and inter- and intra-rater reliability of a novel method of measuring MP using a smart phone app (HipScreen (HS) app). Methods. A total of 20 pelvis radiographs (40 hips) were used to measure MP by using the HS app. Measurements were performed by five different members of the multidisciplinary team, with varying levels of expertise in MP measurement. The same measurements were repeated two weeks later. A senior orthopaedic surgeon measured the MP on picture archiving and communication system (PACS) as the gold standard and repeated the measurements using HS app. Pearson’s correlation coefficient (r) was used to compare PACS measurements and all HS app measurements and assess validity. Intraclass correlation coefficient (ICC) was used to assess intra- and inter-rater reliability. Results. All HS app measurements (from 5 raters at week 0 and week 2 and PACS rater) showed highly significant correlation with the PACS measurements (p < 0.001). Pearson’s correlation coefficient (r) was constantly over 0.9, suggesting high validity. Correlation of all HS app measures from different raters to each other was significant with r > 0.874 and p < 0.001, which also confirms high validity. Both inter- and intra-rater reliability were excellent with ICC > 0.9. In a 95% confidence interval for repeated measurements, the deviation of each specific measurement was less than 4% MP for single measurer and 5% for different measurers. Conclusion. The HS app provides a valid method to measure hip MP in CP, with excellent inter- and intra-rater reliability across different medical and allied health specialties. This can be used in hip surveillance programmes by interdisciplinary measurers. Cite this article: Bone Jt Open 2023;4(5):363–369


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 13 - 13
17 Apr 2023
Andreani L Vozzi G Petrini M Di Stefano R Trincavelli M Mani O Olivieri M Bizzocchi F Creati G Capanna R
Full Access

Traumatic acute or chronic tendon injuries are a wide clinical problem in modern society, resulting in important economic burden to the health system and poor quality of life in patients. Due to the low cellularity and vascularity of tendon tissue the repair process is slow and inefficient, resulting in mechanically, structurally, and functionally inferior tissue. Tissue engineering and regenerative medicine are promising alternatives to the natural healing process for tendon repair, especially in the reconstruction of large damaged tissues. The aim of TRITONE project is to develop a smart, bioactive implantable 3D printed scaffold, able to reproduce the structural and functional properties of human tendon, using FDA approved materials and starting from MSC and their precursor, MPC cell mixtures from human donors. Total cohort selected in the last 12 months was divided in group 1 (N=20) of subjects with tendon injury and group 2 (N=20) of healthy subject. Groups were profiled and age and gender matched. Inclusion criteria were age>18 years and presence of informed consent. Ongoing pregnancy, antihypertensive treatment, cardiovascular diseases, ongoing treatment with anti-aggregants, acetylsalicylic-acid or lithium and age<18 years were exclusion criteria. Firstly, we defined clinical, biological, nutritional life style and genetic profile of the cohort. The deficiency of certain nutrients and sex hormonal differences were correlated with tendon-injured patients. It was established the optimal amount of MPC/MSC human cell (collected from different patients during femoral neck osteotomy). Finally, most suitable biomaterials for tendon regeneration and polymer tendon-like structure were identified. Hyaluronic acid, chemical surface and soft-molecular imprinting (SOFT-MI) was used to functionalize the scaffold. These preliminary results are promising. It will be necessary to enroll many more patients to identify genetic status connected with the onset of tendinopathy. The functional and structural characterization of smart bioactive tendon in dynamic environment will represent the next project step


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 134 - 134
4 Apr 2023
Arrowsmith C Alfakir A Burns D Razmjou H Hardisty M Whyne C
Full Access

Physiotherapy is a critical element in successful conservative management of low back pain (LBP). The aim of this study was to develop and evaluate a system with wearable inertial sensors to objectively detect sitting postures and performance of unsupervised exercises containing movement in multiple planes (flexion, extension, rotation). A set of 8 inertial sensors were placed on 19 healthy adult subjects. Data was acquired as they performed 7 McKenzie low-back exercises and 3 sitting posture positions. This data was used to train two models (Random Forest (RF) and XGBoost (XGB)) using engineered time series features. In addition, a convolutional neural network (CNN) was trained directly on the time series data. A feature importance analysis was performed to identify sensor locations and channels that contributed most to the models. Finally, a subset of sensor locations and channels was included in a hyperparameter grid search to identify the optimal sensor configuration and the best performing algorithm(s) for exercise classification. Models were evaluated using F1-score in a 10-fold cross validation approach. The optimal hardware configuration was identified as a 3-sensor setup using lower back, left thigh, and right ankle sensors with acceleration, gyroscope, and magnetometer channels. The XBG model achieved the highest exercise (F1=0.94±0.03) and posture (F1=0.90±0.11) classification scores. The CNN achieved similar results with the same sensor locations, using only the accelerometer and gyroscope channels for exercise classification (F1=0.94±0.02) and the accelerometer channel alone for posture classification (F1=0.91±0.03). This study demonstrates the potential of a 3-sensor lower body wearable solution (e.g. smart pants) that can identify proper sitting postures and exercises in multiple planes, suitable for low back pain. This technology has the potential to improve the effectiveness of LBP rehabilitation by facilitating quantitative feedback, early problem diagnosis, and possible remote monitoring