The aim of this study was to report long-term clinical outcomes of a modern convertible metal-backed glenoid (MBG) in total shoulder arthroplasty (TSA). After a minimum of 15 years, a previously studied cohort of 35 patients who received a modern convertible MBG during the period 1996 to 2005 was contacted for clinical and radiological follow-up. At last follow-up, patients were evaluated radiologically and clinically according to the Constant Score, Simple Shoulder Test, and visual analogue scale for pain. Complications and revisions were recorded, and survival analysis was performed.Aims
Methods
The aim of this study was to longitudinally compare the clinical and radiological outcomes of anatomical total shoulder arthroplasty (aTSA) up to long-term follow-up, when using cemented keel, cemented peg, and hybrid cage peg glenoid components and the same humeral system. We retrospectively analyzed a multicentre, international clinical database of a single platform shoulder system to compare the short-, mid-, and long-term clinical outcomes associated with three designs of aTSA glenoid components: 294 cemented keel, 527 cemented peg, and 981 hybrid cage glenoids. Outcomes were evaluated at 4,746 postoperative timepoints for 1,802 primary aTSA, with a mean follow-up of 65 months (24 to 217).Aims
Methods
The purpose of this study was to assess mid-term survivorship following primary total knee arthroplasty (TKA) with Optetrak Logic components and identify the most common revision indications at a single institution. We identified a retrospective cohort of 7,941 Optetrak primary TKAs performed from January 2010 to December 2018. We reviewed the intraoperative findings of 369 TKAs that required revision TKA from January 2010 to December 2021 and the details of the revision implants used. Kaplan-Meier analysis was used to determine survivorship. Cox regression analysis was used to examine the impact of patient variables and year of implantation on survival time.Aims
Methods
This study aimed to determine outcomes of isolated tibial insert exchange (ITIE) during revision total knee arthroplasty (TKA). From 1985 to 2016, 270 ITIEs were performed at one institution for instability (55%, n = 148), polyethylene wear (39%, n = 105), insert fracture/dissociation (5%, n = 14), or stiffness (1%, n = 3). Patients with component loosening, implant malposition, infection, and extensor mechanism problems were excluded.Aims
Methods
INTRODUCTION. Implant wear testing is traditionally undertaken using standardized inputs set out by ISO or ASTM. These inputs are based on a single individual performing a single activity with a specific implant. Standardization helps ensure that implants are tested to a known set of parameters from which comparisons may be drawn but it has limitations as patients perform varied activities, with different implant sizes and designs that produce different kinematics/kinetics. In this study, wear performance has been evaluated using gait implant specific loading/kinematics and comparing to a combination deep knee bend (DKB), step down (SD) and gait implant specific loading on cruciate retaining (CR) rotating platform (RP) total knee replacements (TKR). This combination activity profile better replicates patient activities of daily living (ADL). METHODS. Two sets of three ATTUNE. ®. size 5 right leg CR RP TKRs (DePuy Synthes, Warsaw, IN) were used in a study to evaluate ADL implant wear. Implant specific loading profiles were produced via a validated finite element lower limb model [1] that uses activity data such as gait (K1L_110108_1_86p), SD (K1L_240309_2_144p), and DKB (K9P_2239_0_9_I1) from the Orthoload database [2] to produce external boundary conditions. Each set of components were tested using a VIVO joint simulator (AMTI, Watertown, MA, Figure 1) for a total of 4.5 million cycles (Mcyc). All cycles were conducted at 0.8Hz in force-control with flexion driven in displacement control. Bovine calf serum lubricant was prepared to a total protein concentration of 18g/L and maintained at 37°±2°C. Wear of the tibial inserts was quantified via gravimetric methods per ISO14243–2:2009(E). Polyethylene tibial insert weights were taken prior to testing and every 0.5Mcyc there after which corresponded to serum exchange intervals. The multi-activity test intervals were split into10 loops of 1,250 DKB, 3,000 SD, and 45,750 gait cycles in series. Based on activity data presented by Wimmer et al. the number of cycles per activity and activities used is sufficient for a person that is considered active [3]. A loaded soak control was used to compensate for fluid absorption in wear rate calculations. Wear rates were calculated using linear regression. RESULTS SECTION. The wear rate for the gait-only activity test was calculated to be 0.20±0.04mg/Mcyc conversely the wear rate for the multi-activity test was 2.65±0.67mg/Mcyc (Figure 2). Wear scars can be found in Figure 3. Using a two-sided t-test of unequal variance, it was found that there was a significant difference between the two wear rates (p=0.004). DISCUSSION. Adding activities to the wear simulation test significantly increased the average wear rate of the test samples, confirming that changes in cross shear from different activities will tend to increase the wear of an implant. The results of this study prove that single activity wear testing may not be the most clinically
The aim of this study was to establish the results of isolated exchange of the tibial polyethylene insert in revision total knee arthroplasty (RTKA) in patients with well-fixed femoral or tibial components. We report on a series of RTKAs where only the polyethylene was replaced, and the patients were followed for a mean of 13.2 years (10.0 to 19.1). Our study group consisted of 64 non-infected, grossly stable TKA patients revised over an eight-year period (1998 to 2006). The mean age of the patients at time of revision was 72.2 years (48 to 88). There were 36 females (56%) and 28 males (44%) in the cohort. All patients had received the same cemented, cruciate-retaining patella resurfaced primary TKA. All subsequently underwent an isolated polyethylene insert exchange. The mean time from the primary TKA to RTKA was 9.1 years (2.2 to 16.1).Aims
Patients and Methods
Two big problems exist with the all polyethylene cemented tibial component; the polyethylene and the cement. The polyethylene is too weak and flexible to bear high tibial load, so it deforms and loosens. The interface stresses are too high when two flexible structures are poorly bonded and heavily loaded. Modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80's for versatility and to facilitate screw fixation for cementless implants. These designs allow exchange of various polyethylene thicknesses, and aids the addition of stems and wedges. Other advantages include the reduction of inventory, and the potential for isolated tibial polyethylene exchanges as a simpler revision procedure. Several studies have documented the high failure rate of isolated polyethylene exchange procedures, because technical problems related to the original components are left uncorrected. However, revision for wear is the simplest revision ever!. Since the late 1980's the phenomena of polyethylene wear and osteolysis have been observed much more frequently when compared with earlier eras. The reasons for this increased prevalence of synovitis, progressive osteolysis, and
Background. Distal femoral replacements (DFR) are used in children for limb-salvage procedures after bone tumor surgery. These are typically modular devices involving a hinged knee axle that has peripheral metal-on-polyethylene (MoP) and central metal-on-metal (M-M) articulations. While modular connections and M-M surfaces in hip devices have been extensively studied, little is known about long-term wear or corrosion mechanisms of DFRs. Retrieved axles were examined to identify common features and patterns of surface damage, wear and corrosion. Methods. The cobalt chromium alloy axle components from 13 retrieved DFRs were cleaned and examined by eye and with a stereo microscope up to 1000× magnification. Each axle was marked into 6 zones for visual inspection: the proximal and distal views, and the middle (M-M) and 2 peripheral (MoP) zones. The approximate percentage of the following features were recorded per zone: polishing, abrasion or scratching, gouges or detectable wear, impingement wear (i.e. from non- intentional articulation), discoloration and pitting. Results. In each case, the middle M-M zones showed more damage features compared with peripheral MoP zones. Brown discoloration, presumably due to tribofilm deposits, was the predominant M-M area feature, particularly at the junction between the MoP and M-M zones. Higher magnification showed areas of polishing underlying the discoloration, suggesting repetitive removal of the surface metal and re-deposition of tribofilms (Fig 2B). 9 cases demonstrated reflective patches resembling “thumbprint” or “fish scale” markings, which, under higher magnification, showed signs of scratching and grooving in a radial pattern (Figs 2D, 3A). Pits were occasionally present but appeared to be from third-body damage as signs of corrosion were absent. Features that resembled carbides, sometimes with associated “comet” patterns of scratching were apparent under higher magnification in some areas. The MoP zones showed variable scratching, abrasion and wear polishing. The MoP to M-M junctional areas were demarcated by a distinct band corresponding, in some cases, to a narrow wear groove or gouge. 3 axles showed evidence of
Posterior stabilized (PS) total knee arthroplasty (TKA), wherein mechanical engagement of the femoral cam and tibial post prevents abnormal anterior sliding of the knee, is a proven surgical technique. However, many patients complain about abnormal clicking sensation, and several reports of
Aims
Patients and Methods
Background. Use of a baseplate with a smaller diameter in reverse shoulder arthroplasty has been recommended, especially in patients with a small glenoid or insufficient bony stock due to
Two big problems exist with the all-polyethylene cemented tibial component; the polyethylene and the cement. The polyethylene is too weak and flexible to bear high tibial load, so it deforms and loosens. The interface stresses are too high when two flexible structures are poorly bonded and heavily loaded. Modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80's for versatility and to facilitate screw fixation for cementless implants. These designs allow exchange of various polyethylene thicknesses, and aids the addition of stems and wedges. Other advantages include the reduction of inventory, and the potential for isolated tibial polyethylene exchanges as a simpler revision procedure. Several studies have documented the high failure rate of isolated polyethylene exchange procedures, because technical problems related to the original components are left uncorrected. However, revision for wear is the simplest revision ever!. Since the late 1980's the phenomena of polyethylene wear and osteolysis has been observed much more frequently when compared with earlier eras. The reasons for this increased prevalence of synovitis, progressive osteolysis, and
Two big problems exist with the all-polyethylene cemented tibial component; the polyethylene and the cement. The polyethylene is too weak and flexible to bear tibial load, so it deforms and loosens. The interface stresses are too high when two flexible structures are poorly bonded and heavily loaded. Modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-1980s for versatility and to facilitate screw fixation for cementless implants. These designs allow exchange of various polyethylene thicknesses, and aid the addition of stems and wedges. Other advantages include the reduction of inventory, and the potential for isolated tibial polyethylene exchanges as a simpler revision procedure. Several studies have documented the high failure rate of isolated polyethylene exchange procedures, because technical problems related to the original components are left uncorrected. However, revision for wear is the simplest revision ever!. Since the late 1980s the phenomena of polyethylene wear and osteolysis have been observed much more frequently when compared with earlier eras. The reasons for this increased prevalence of synovitis, progressive osteolysis, and
Total knee replacement (TKR) is one of the most successful procedures in orthopaedic surgery. Although originally limited to more elderly and less active individuals, the inclusion criteria for TKR have changed, with ever younger, more active and heavier patients receiving TKR. Currently, wear debris related osteolysis and associated prosthetic loosening are major modes of failure for TKR implants of all designs. Initially, tibial components were cemented all polyethylene monoblock constructs. Subsequent long-term follow-up studies of these implants have demonstrated excellent durability in survivorship studies out to twenty years. Aseptic loosening of the tibial component was one of the main causes of failure in these implants. Cemented metal-backed nonmodular tibial components were subsequently introduced to allow for improved tibial load distribution and to protect osteoporotic bone. Long-term studies have established that many one-piece nonmodular tibial components have maintained excellent durability. Eventually, modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80s mainly to facilitate screw fixation for cementless implants. These designs also provided intraoperative versatility by allowing interchange of various polyethylene thicknesses, and to also aid the addition of stems and wedges. Other advantages included the reduction of inventory, and the potential for isolated tibial polyethylene exchanges as a simpler revision procedure. However, several studies have documented the high failure rate of isolated polyethylene exchange procedures, probably because technical problems related to the original components are left uncorrected. Since the late 1980s, the phenomena of polyethylene wear and osteolysis have been observed much more frequently when compared with earlier eras. The reasons for this increased prevalence of synovitis, progressive osteolysis, and
We wished to investigate the influence of metal debris exposure
on the subsequent immune response and resulting soft-tissue injury
following metal-on-metal (MoM) hip arthroplasty. Some reports have
suggested that debris generated from the head-neck taper junction
is more destructive than equivalent doses from metal bearing surfaces. We investigated the influence of the source and volume of metal
debris on chromium (Cr) and cobalt (Co) concentrations in corresponding
blood and hip synovial fluid samples and the observed agglomerated
particle sizes in excised tissues using multiple regression analysis
of prospectively collected data. A total of 199 explanted MoM hips
(177 patients; 132 hips female) were analysed to determine rates
of volumetric wear at the bearing surfaces and taper junctions. Aims
Patients and Methods
Introduction. Titanium nitride (TiN) coatings are used in total hip arthroplasty to reduce friction of bearing couples or to decrease the allergic potential of orthopaedic alloys. Little is known about performance of currently manufactured implants, since only few retrieval studies were performed, furthermore they included a small number of implants manufactured over 15 years ago. Aim of study. To examine wear and degradation of retrieved TiN coated femoral heads articulating with ultra-high molecular weight polyethylene (UHMWPE). Methods. We included eight femoral heads with a made od TiAl6V4 alloy and coated with TiN using Physical Vapour Deposition (PVD). All heads (28 and 32 mm) were retrieved after at least 12 months of use (range 12–56). The reason for revision was aseptic loosening in 6 cases, septic loosening in one case and recurrent dislocations (five episodes) in one uncemented prosthesis. One unused head was included as reference sample. All implants were evaluated with light microscopy, Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDS). 30 SEM images from each implant were digitally analysed using ImageJ software to compare damage in loaded and non weight-bearing parts of the heads. Results. Studies with light microscopy revealed severe damage to the dislocated femoral head, with multiple metallic scratches. SEM studies indicated presence of multiple scratches and pinholes with a diameter of 1–10 µm (Fig1a,b,). Residue from the manufacturing process was present in all implants in form of pure Ti droplets found in round voids. In all implants we found irregular areas (diam. 20–50 µm, Fig 1c,d) where the coating was delaminated from the substrate metal with cracks arising from coating defects (Fig1e-h). Some of these debonded fragments were embedded into the PVD layer in weight-bearing parts of all heads. In one head, which was subjected to dislocations we observed deposits of titanium alloy from the acetabular shell (Fig 2a,b). The deposits were accompanied by large patches of delaminated coating as well as multiple cracks (Fig 2c,d). Small fragments of the acetabular titanium alloy damaged the coating in third body mechanism. Surprisingly in three implants we EDS analysis revealed similar spheres (diam. 1–10 µm) containing Niobium (Nb), although this element is not a part of any of the components used in the implants(Fig 2e,f). Interestingly presence of Nb droplets were associated with a higher number of other defect in these heads both in weight-baring and non weight-bearing parts of the heads suggesting inferior coating quality in these cases (Fig 2 g,h; Fig3, cases H2,H5,H8). Conclusions. Compared to previous studies we did not observe
Introduction. Posterior glenoid wear is common with glenohumeral osteoarthritis. To correct posterior wear, surgeons may eccentrically ream the anterior glenoid to restore version. However, eccentric reaming undermines prosthesis support by removing unworn anterior glenoid bone, compromises cement fixation by increasing the likelihood of peg perforation, and medializes the joint line which has implications on joint stability. To conserve bone and preserve the joint line when correcting glenoid version, manufacturers have developed posterior augment glenoids for aTSA and rTSA applications. This clinical study quantifies outcomes achieved using posteriorly augmented aTSA/rTSA glenoid implants in patients with severe posterior glenoid wear at 2 years minimum follow-up. Methods. 47 patients (mean age: 68.7yrs) with 2 years minimum follow-up were treated by 5 fellowship trained orthopaedic surgeons using either 8° posteriorly augmented aTSA/rTSA glenoid components in patients with severe posterior glenoid wear. 24 aTSA patients received posteriorly augmented glenoids (65.8 yrs; 7F/17M) for OA and 23 rTSA patients received posteriorly augmented glenoids (71.8 yrs; 9F/14M) for treatment of CTA and OA. Outcomes were scored using SST, UCLA, ASES, Constant, and SPADI metrics; active abduction, forward flexion, and external rotation were also measured to quantify function. Average follow-up was 27.5 months (aTSA 29.4; rTSA 25.5). A two-tailed, unpaired t-test identified differences (p<0.05) in pre-operative, post-operative, and pre-to-post improvements. Results. A comparison of pre-operative, post-operative, and pre-to-post improvement in outcomes are presented in Tables 1–3, respectively. As described in Table 1, pre-operative outcomes were similar for patients receiving posterior augment aTSA and posterior augment rTSA implants, with only active abduction being significantly less in rTSA patients. Additionally, rTSA patients were noted to be significantly older (p=0.0434) and have significantly longer follow-up (p=0.0358) though no difference was noted in mean patient height, weight, or BMI between cohorts. As described in Table 2, at 2 years minimum follow-up posterior augment aTSA patients were associated with significantly greater SST scores and also had significantly more active abduction and active external rotation than posterior augment rTSA patients. However, as described in Table 3, no significant difference was observed in pre-to-post improvement of outcome scoring metrics and only improvement in active external rotation was observed to be significantly different between the two cohorts. No complications were reported for either posterior augment implant cohort. Conclusions. These results demonstrate positive outcomes can be achieved at 2 years minimum follow-up in patients with
Introduction. Due to the predictability of outcomes achieved with reverse shoulder arthroplasty (rTSA), rTSA is increasingly being used in patients where glenoid fixation is compromised due to presence of glenoid wear. There are various methods to achieve glenoid fixation in patients with glenoid wear, including the use of bone grafting behind the glenoid baseplate or the use of augmented glenoid baseplates. This clinical study quantifies clinical outcomes achieved using both techniques in patients with