Bone marrow stem cells (BMSCs) represent a collection of different cell types exhibiting stem cell characteristics but with notable heterogeneity. Among these, Skeletal Stem Cells (SSCs) represent a distinct matrix subgroup within BMSC and demonstrate a specialized capacity to facilitate bone formation, recruit chondrocytes, and contribute to hematopoiesis. SSCs play a pivotal role in orchestrating the functions of skeletal organs. Local ischemia has a significant impact on cell survival and function. We hypothesize that bone ischemia induces alterations in the differentiation potential of SSCs, consequently influencing changes in bone structure. We mechanically dissected tissue from the necrotic segment in the femoral head and more normal appearing areas from the femoral neck of specimens from 5 patients diagnosed with osteonecrosis of the femoral head (ONFH). These tissues were enzymatically broken down into individual cell suspensions. Utilizing fluorescence-activated cell sorting (FACS) based on specific surface markers indicative of human
The signaling molecule prostaglandin E2 (PGE2), synthesized by cyclooxygenase-2 (COX-2), is immunoregulatory and reported to be essential for
Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.Aims
Methods
Bone tissue experiences continued remodelling in response to changes in its biochemical and biophysical environment. Given the finite lifespan of osteoblasts, this continued bone formation requires replenishment from a progenitor population. Although this is largely believed to be from a
The architecture within which cells reside is key to mediating their specific functions within the body. In this study, we use melt electrospinning writing (MEW), a recently developed 3D printing technology unique in its ability to generate ECM like fibres and control their deposition, to fabricate cell micro-environments with various fibrous architectures to study their effect on human stem cell behaviour. We designed, built and optimised a MEW apparatus and used it to fabricate four different platform designs of 10.4±2μm fibre diameter, with angles between fibres on adjacent layers of 90°, 45°, 10° and R (random). Characterisation was conducted via scanning electron microscopy (SEM) imaging and tensile testing, and human
Osteoporosis affects millions globally and current anti-catabolic treatments are limited by significant side-effects. Osteoporosis arises when
Advances in our understanding of
The success of anterior cruciate ligament reconstruction (ACLR)
depends on osseointegration at the graft-tunnel interface and intra-articular
ligamentization. Our aim was to conduct a systematic review of clinical
and preclinical studies that evaluated biological augmentation of
graft healing in ACLR. In all, 1879 studies were identified across three databases.
Following assessment against strict criteria, 112 studies were included
(20 clinical studies; 92 animal studies). Aims
Materials and Methods
Background. Following endosteal uncemented orthopaedic device implantation, the initial implant/bone interface retains spaces and deficiencies further exacerbated by pressure necrosis and resultant bone resorption. This implant-bone space requires native bone infill through the process of de novo osteogenesis. New appositional bone formation on the implant surface is known as contact osteogenesis and is generated by osteogenic cells, including
Background. In 2012, the National Joint Registry recorded 86,488 primary total hip replacements (THR) and 9,678 revisions (1). To date aseptic loosening remains the most common cause of revision in hip and knee arthroplasty, accounting for 40% and 32% of all cases respectively and emphasising the need to optimise osseointegration in order to reduce revisions. Clinically, osseointegration results in asymptomatic stable durable fixation of orthopaedic implants. Osseointegration is a complex process involving a number of distinct mechanisms affected by the implant surface topography, which is defined by surface orientation and surface roughness. Micro- and nano-topography levels have discrete effects on implant osseointegration and yet the role on cell function and subsequent bone implant function is unknown. Nanotopography such as collagen banding is a critical component influencing the SSC niche in vivo and has been shown to influence a range of cell behaviours in vitro (2,3). We have used unique fabricated nanotopographical pillar substrates to examine the function of human bone stem cells on titanium surfaces. Aim. To investigate the effect of nanotopographical cues on adult
Recently, the osteoregenerative properties of allograft have been enhanced by addition of autogenous
Background. Impaction bone grafting with milled human allograft is the gold standard for replacing lost bone stock during revision hip surgery. Problems surrounding the use of allograft include cost, availability, disease transmission and stem subsidence (usually due to shear failure of the surrounding allograft). Aims. To investigate various polymers for use as substitute allograft. The ideal graft would be a composite with similar mechanical characteristics as allograft, and with the ability to form de novo bone. Methods. High and low molecular weight (MW) forms of three different polymers (polylactic acid (PLA), poly (lactic-co-glycolic) acid (PLGA) and polycaprolactone (PCL)) were milled, impacted into discs, and then tested in a custom built shear testing rig, and compared to allograft. A second stage of the experiment involved the addition of
Background. Replacing bone lost as a consequence of trauma or disease is a major challenge in the treatment of musculoskeletal disorders. Tissue engineering strategies seek to harness the potential of stem cells to regenerate lost or damaged tissue. Bone marrow aspirate (BMA) provides a promising autologous source of
Background.
Aims. Disease transmission, availability and economic costs of allograft have resulted in significant efforts into finding an allograft alternative for use in impaction bone grafting (IBG). Biotechnology offers the combination of
Aims. Impaction bone grafting with milled human allograft is the gold standard for replacing lost bone stock during revision hip surgery. Problems surrounding the use of allograft include cost, availability, disease transmission and stem subsidence (usually due to shear failure of the surrounding allograft). The aim of this study was to investigate various polymers for use as substitute allograft. The ideal graft would be a composite with similar mechanical characteristics as allograft, and with the ability to form de novo bone. Methods. High and low molecular weight (MW) forms of three different polymers (polylactic acid (PLA), poly (lactic co-glycolic) acid (PLGA) and polycaprolactone (PCL)) were milled, impacted into discs, and then tested in a custom built shear testing rig, and compared to allograft. A second stage of the experiment involved the addition of
The osteo-regenerative properties of allograft have recently been enhanced by addition of autogenous
Background.
Recent approaches have sought to harness the potential of stem cells to regenerate bone lost as a consequence of trauma or disease. Bone marrow aspirate (BMA) provides an autologous source of
Disease transmission, availability and economic costs of allograft have resulted in significant efforts into finding an allograft alternative for use in impaction bone grafting (IBG). Biotechnology offers the combination of