Advertisement for orthosearch.org.uk
Results 1 - 20 of 26
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 76 - 76
2 Jan 2024
Awad H
Full Access

Vascular inflammation and activation of myofibroblasts are significant contributors to the progression of fibrosis, which can severely impair tissue function. In various tissues, including tendons, Transforming growth factor beta 1 (TGF-β1) has been identified as a critical driver of adhesion and scar formation. Nevertheless, the mechanisms that underlie fibrotic peritendinous adhesions are still not well comprehended, and human microphysiological systems to help identify effective therapies remain scarce. To address this issue, we developed a novel human Tendon-on-a-Chip (hToC), comprised of an endothelialized vascular compartment harboring circulating monocytes and separated by a 5 μm/100 nm dual-scale ultrathin porous membrane from a type I/III collagen hydrogel with primary tendon fibroblasts and tissue-resident macrophages, all under defined serum-free conditions. The hToC models the crosstalk of the various cells in the system leading to the induction of inflammatory and fibrotic pathways including the activation of mTOR signaling. Consistent with phenotypes observed in vivo in mouse models and clinical human samples, we observed myofibroblast differentiation and senescence, tissue contraction, excessive extracellular matrix deposition, and monocytes’ transmigration and macrophages’ secretion of inflammatory cytokines, which were dependent on the presence of the endothelial barrier. This model offers novel insights on the role of vasculature in the pathophysiology of adhesions, which were previously underappreciated. Moreover, in testing whether the hToC could be used to evaluate efficacy of therapeutics, we were able to capture donor-specific variability in the response to Rapamycin treatment, which reduced myofibroblast activation regardless. Thus, our findings demonstrate the value of the hToC as a human microphysiological system for investigating the pathophysiology of fibrotic conditions in the context of peritendinous injury and similar fibrotic conditions, providing an alternative to animal testing


Bone & Joint Research
Vol. 12, Issue 3 | Pages 219 - 230
10 Mar 2023
Wang L Li S Xiao H Zhang T Liu Y Hu J Xu D Lu H

Aims

It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth.

Methods

C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 114 - 114
1 Nov 2021
Başal Ö Ozmen O Deliormanli AM
Full Access

Introduction and Objective. Bone is a tissue which continually regenerates and also having the ability to heal after injuries however, healing of large defects requires intensive surgical treatment. Bioactive glasses are unique materials that can be utilized in both bone and skin regeneration and repair. They are degradable in physiological fluids and have osteoconductive, osteoinductive and osteostimulative properties. Osteoinductive growth factors such as Bone Morphogenetic Proteins (BMP), Vascular Endothelial Growth Factor (VEGF), Epidermal Growth Factor (EGF), Transforming Growth Factor (TGF) are well known to stimulate new bone formation and regeneration. Unfortunately, the synthesis of these factors is not cost- effective and, the broad application of growth factors is limited by their poor stability in the scaffolds. Instead, it is wise to incorporate osteoinductive nanomaterials such as graphene nanoplatelets into the structures of synthetic scaffolds. In this study, borate-based 13-93B3 bioactive glass scaffolds were prepared by polymer foam replication method and they were coated with graphene-containing poly (ε-caprolactone) layer to support the bone repair and regeneration. Materials and Methods. Effects of graphene concentration (1, 3, 5, 10 wt%) on the healing of rat segmental femur defects were investigated in vivo using male Sprague–Dawley rats. Fabricated porous bioactive glass scaffolds were coated by graphene- containing polycaprolactone solution using dip coating method. The prepared 0, 1, 3, 5 and 10 wt% graphene nanoparticle-containing PCL-coated composite scaffolds were designated as BG, 1G-P-BG, 3G-P-BG, 5G-P-BG and 10G-P-BG, for each group (n: 4) respectively. Histopathological and immunohistochemical (bone morphogenetic protein, BMP-2; smooth muscle actin, SMA and alkaline phosphatase, ALP) examinations were made after 4 and 8 weeks of implantation. Results. Results showed that after 8-weeks of implantation both cartilage and bone formation were observed in all animal groups. After 4 and 8 weeks of implantation the both osteoblast and osteoclast numbers were significantly higher in the group 4 compared to the control group. Bone formation was significant starting from 1 wt% graphene-coated bioactive glass implanted group and highest amount of bone formation was obtained in group containing 10 wt% graphene (p<0.001). Newly formed vessels expressed this marker and increased vascularization was observed in 8- weeks period compared to the 4-weeks period. In addition, an increase in new vessel formation were observed in graphene-coated scaffold implanted groups compared to the control group. While cartilage tissue was observed in control group, bone formation percentages were significant in graphene-coated scaffold implanted groups. Highest amount of bone formation occurred in group 4 (10 % wt G-C). Conclusions. Additionally, the presence of graphene nanoplatelets enhanced the BMP-2, SMA and ALP levels compared to the bare bioactive glass scaffolds. It was concluded that pristine graphene-coated bioactive glass scaffolds improve osteointegration and bone formation in rat femur defect when compared to bare bioglass scaffolds


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 138 - 138
1 Nov 2021
Kinitz R Heyne E Thierbach M Wildemann B
Full Access

Introduction and Objective. Chronic tendinopathy is a multifactorial disease and a common problem in both, athletes and the general population. Mechanical overload and in addition old age, adiposity, and metabolic disorders are among the risk factors for chronic tendinopathy but their role in the pathogenesis is not yet unequivocally clarified. Materials and Methods. Achilles tendons of young (10 weeks) and old (100 weeks) female rats bred for high (HCR) and low (LCR) intrinsic aerobic exercise capacity were investigated. Both Achilles tendons of 28 rats were included and groups were young HCR, young LCR, old HCR, and old LCR (n = 7 tendons per group/method). In this rat model, genetically determined aerobic exercise capacity is associated with a certain phenotype as LCR show higher body weight and metabolic dysfunctions in comparison to HCR. Quantitative real-time PCR (qPCR) was used to evaluate alterations in gene expression. For histological analysis, semi-automated image analysis and histological scoring were performed. Results. Age-related downregulation of tenocyte marker genes (Tenomodulin), genes related to matrix modelling and remodeling (Collagen type 1, Collagen type 3, Elastin, Biglycan, Fibronectin, Tenascin C), and Transforming growth factor beta 3 (Tgfb3) were detected in tendons from HCR and LCR. Furthermore, inflammatory marker Cyclooxygenase 2 (Cox2) was downregulated, while Microsomal prostaglandin E synthase 2 (Ptges2) was upregulated in tendons from old HCR and old LCR. No significant alteration was seen in Interleukin 6 (Il6), Interleukin 1 beta (Il1b), and Tumor necrosis factor alpha (Tnfa). Histological analysis revealed that Achilles tendons of old rats had fewer and more elongated tenocyte nuclei compared to young rats, indicating a reduced metabolic activity. Even though higher content of glycosaminoglycans as a sign of degeneration was found in tendons of old HCR and LCR, no further signs of tendinopathy were detectable in histological evaluation. Conclusions. Overall, aging seems to play a prominent role in molecular and structural alterations of Achilles tendon tissue, while low intrinsic exercise capacity did not cause any changes. Even though tendinopathy was not present in any of the groups, some of the shown age-related changes correspond to single characteristics of chronic tendon disease. This study gives an insight into tendon aging and its contribution to molecular and cellular changes in Achilles tendon tissue


Bone & Joint Research
Vol. 10, Issue 8 | Pages 548 - 557
25 Aug 2021
Tao Z Zhou Y Zeng B Yang X Su M

Aims

MicroRNA-183 (miR-183) is known to play important roles in osteoarthritis (OA) pain. The aims of this study were to explore the specific functions of miR-183 in OA pain and to investigate the underlying mechanisms.

Methods

Clinical samples were collected from patients with OA, and a mouse model of OA pain was constructed by surgically induced destabilization of the medial meniscus (DMM). Reverse transcription quantitative polymerase chain reaction was employed to measure the expression of miR-183, transforming growth factor α (TGFα), C-C motif chemokine ligand 2 (CCL2), proinflammatory cytokines (interleukin (IL)-6, IL-1β, and tumour necrosis factor-α (TNF-α)), and pain-related factors (transient receptor potential vanilloid subtype-1 (TRPV1), voltage-gated sodium 1.3, 1.7, and 1.8 (Nav1.3, Nav1.7, and Nav1.8)). Expression of miR-183 in the dorsal root ganglia (DRG) of mice was evaluated by in situ hybridization. TGFα, CCL2, and C-C chemokine receptor type 2 (CCR2) levels were examined by immunoblot analysis and interaction between miR-183 and TGFα, determined by luciferase reporter assay. The extent of pain in mice was measured using a behavioural assay, and OA severity assessed by Safranin O and Fast Green staining. Immunofluorescent staining was conducted to examine the infiltration of macrophages in mouse DRG.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 285 - 297
1 Apr 2021
Ji M Ryu HJ Hong JH

Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA.

Cite this article: Bone Joint Res 2021;10(4):285–297.


Injured skeletal muscle repairs spontaneously via regeneration, however, this process is often incomplete because of fibrotic tissue formation. In our study we wanted to show improved efficiency of regeneration process induced by antifibrotic agent decorin in a combination with Platelet Rich Plasma (PRP)-derived growth factors. A novel human myoblast cell (hMC) culture, defined as CD56 (NCAM)+ developed in our laboratory, was used for evaluation of potential bioactivity of PRP and decorin. To determine the their effect on the viability of hMC we performed a MTT assay. To perform the cell proliferation assay, hMCs were separately seeded on plates at a concentration of 30 viable cells per well. Cell growth medium prepared with different concentrations of PRP exudates (5%, 10%, and 20%) and decorin (10 ng/mL, 25 ng/mL, and 50 ng/mL) were added and incubated for 7 days. After incubation we stained the cells with crystal-violet and measured the absorbance. To study the expression of Transforming Growth Factor Beta (TGF-β) and myostatin (MSTN), two main fibrotic factors in the process of muscle regeneration we performed several ELISA assays in groups treated with all therapeutic agents (PRP, decorin and their combination). Further, we have studied the ability of these agents to influence the differential cascade of dormant myoblasts towards fully differentiated myotubes by monitoring step wise activation of single nuclear factors like MyoD and Myogenin via multicolor flow cytometry. We stained the cells simultaneously with antibodies against CD56, MyoD and myogenin. We acquired cell images of 5,000 events per sample at 40 x magnification using 488 nm and 658 nm lasers and fluorescence was collected using three spectral detection channels. We analysed the cells populations according to expression of single or multiple markers and their ratios. Finally, we examined the treated cell populations using a multicolour laser microscope after staining for desmin (a key marker of myogenic differentiation of hMC), α-tubulin, and nuclei. Optical images were acquired at the center of chamber slides where the cell density is at its highest using a Leica TCS SP5 II confocal microscope and analysed using Photoshop CS6, where a “Color Range” tool was used in combination with a histogram palette to count the pixels that correspond to desmin-positive areas in an image. The mitochondrial activity of cells, as determined by the MTT assay, was significantly increased (p < 0 .001) after exposure to tested concentrations of PRP exudate. Similarly, viability was elevated in all tested concentrations of decorin. PRP exudate enhanced the viability of cells to more than 400% when compared to the control (p < 0 .001). The viability of cells treated with PRP exudates was also significantly higher when compared to decorin (p < 0 .001). Decorin did not show a significant effect on cell proliferation compared to the control, however, cultivation with PRP exudate leads to a 5-fold increase in cell proliferation (p < 0 .001). Decorin was shown to down-regulate the expression of TGF-β when compared to the control by more than 15% (p < 0 .001) but significantly less than PRP exudate p < 0 .005). PRP significantly down-regulated TGF-β expression by more than 30% (p < 0 .001). Similarly, the MSTN expression levels were significantly down-regulated by decorin and PRP. MSTN levels of cells treated with decorin were decreased by 28.4% (p < 0 .001) and 23.1% by PRP (p < 0 .001) when compared to the control group. Using flow cytometry we detected a 39.1% increase in count of myogenin positive cells in the PRP-treated group compared to the control. Moreover, there was a 3.09% increase in cells positive only for myogenin, whereas no such cells were found in the control cell population. The population of cells positive only for myogenin is considered as fully differentiated and capable of fusion into myotubes as well as future mucle fibers and is thus of great importance for muscle regeneration. At the same time 20.6% fewer cells remained quiescent (positive only for CD56). Cells positive for both MyoD and myogenin represent the population that shifted significantly towards mature myocites during myogenesis but are not yet fully committed. Finally, a statistically significant up-regulation of desmin expression (p < 0 .01 for the PRP treated group, p < 0 .005 for the decorin and PRP + decorin treated groups) was present in all therapeutic groups when compared to the control. While no significant difference was found between the PRP and decorin-treated groups, their combination led to a more than 3-fold increase (p < 0 .005) of desmin expression when compared to single bioactives. PRP can be a highly potential therapeutic agent for skeletal muscle regeneration and repair, especially if in combination with a TGF-β antagonis decorin. Achieving better healing could likely result in faster return to play and lower reinjury rate


Bone & Joint Research
Vol. 9, Issue 7 | Pages 368 - 385
1 Jul 2020
Chow SK Chim Y Wang J Wong RM Choy VM Cheung W

A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing.

Cite this article: Bone Joint Res 2020;9(7):368–385.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 412 - 420
1 Jul 2020
Hefka Blahnova V Dankova J Rampichova M Filova E

Aims

Here we introduce a wide and complex study comparing effects of growth factors used alone and in combinations on human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation. Certain ways of cell behaviour can be triggered by specific peptides – growth factors, influencing cell fate through surface cellular receptors.

Methods

In our study transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) were used in order to induce osteogenesis and proliferation of hMSCs from bone marrow. These cells are naturally able to differentiate into various mesodermal cell lines. Effect of each factor itself is pretty well known. We designed experimental groups where two and more growth factors were combined. We supposed cumulative effect would appear when more growth factors with the same effect were combined. The cellular metabolism was evaluated using MTS assay and double-stranded DNA (dsDNA) amount using PicoGreen assay. Alkaline phosphatase (ALP) activity, as early osteogenesis marker, was observed. Phase contrast microscopy was used for cell morphology evaluation.


Bone & Joint Research
Vol. 7, Issue 11 | Pages 587 - 594
1 Nov 2018
Zhang R Li G Zeng C Lin C Huang L Huang G Zhao C Feng S Fang H

Objectives

The role of mechanical stress and transforming growth factor beta 1 (TGF-β1) is important in the initiation and progression of osteoarthritis (OA). However, the underlying molecular mechanisms are not clearly known.

Methods

In this study, TGF-β1 from osteoclasts and knee joints were analyzed using a co-cultured cell model and an OA rat model, respectively. Five patients with a femoral neck fracture (four female and one male, mean 73.4 years (68 to 79)) were recruited between January 2015 and December 2015. Results showed that TGF-β1 was significantly upregulated in osteoclasts by cyclic loading in a time- and dose-dependent mode. The osteoclasts were subjected to cyclic loading before being co-cultured with chondrocytes for 24 hours.


Tendon and ligament injuries represent highly prevalent and unmet clinical challenge that may significantly benefit from tissue engineering therapeutic strategies, once optimal cell source and biomolecules regulating tendon homeostasis are properly defined. Herein, we aimed to evaluate the expression of tendon/ligament markers in two novel cell populations, namely human dental pulp stem cells (DPSCs) and periodontal ligament cells (PDLCs), in response to supplementation with TGF-β ligands relevant for tendon development and healing, as well as under standard tri-lineage differentiation conditions. DPSCs and PDLCs were isolated from sound human permanent molars removed for orthodontic reasons. Pulp tissue and periodontal ligament were minced and digested with collagenase (3mg/mL) and cells were expanded in α-MEM supplemented with 10% fetal bovine serum (basal medium). To evaluate the susceptibility of DPSCs and PDLCs to tenogenic induction, cells were seeded at density of 1000 cells/cm2 and cultured up to 21 days in basal medium or media supplemented with TGF-β3 (10ng/ml), or GDF-5 (50 ng/ml). Cell response was evaluated weakly by analysis of expression of tendon, bone and cartilage markers, employing real time RT-PCR and immunocytochemistry. A significant increase in collagen I and collagen III expression was observed with the culture progression in all conditions, with abundant matrix being deposited by day 14. A significant upregulation of scleraxis expression was demonstrated in response to supplementation with TGF-β3 in both cell populations, when compared to basal medium and medium with GDF-5. It was concluded that TGF-β3 may represent an effective inducer of stem cell tenogenic differentiation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 15 - 15
1 Jan 2017
Timur U Caron M Welting T Weinans H van der Windt A Emans P Jahr H
Full Access

As cartilage has poor intrinsic repair capacity, in vitroexpansion of human articular chondrocytes (HACs) is required for cell-based therapies to treat cartilage pathologies. During standard expansion culture (i.e. plasma osmolarity, 280 mOsm) chondrocytes inevitably lose their specific phenotype and de-differentiate, which makes them inappropriate for autologous chondrocyte implantation. It has been shown that physiological osmolarity (i.e. 380 mOsm) increases collagen type II (COL2) expression in vitro, but the underlying molecular mechanism is unknown. Transforming growth factor beta (TGFβ) super family members are accepted key regulators of chondrocyte differentiation and known to stimulate COL2 production. In this study we aimed to elucidate the role of TGFβ superfamily member signalling as a molecular mechanism potentially driving the COL2 expression under physiological (380 mOsm) culture conditions. HACs from OA patients (p1) were cultured in cytokine-free medium of 280 or 380 mOsm, under standard 2D in vitroconditions, with or without lentiviral TGFβ2 knockdown (RNAi). Expression of TGFβ isoforms, BMPs and chondrocyte marker genes was evaluated by QPCR. TGFβ2 protein secretion was evaluated using ELISA and bioactivity was determined using an established reporter cell line. Involvement of BMP signaling was investigated by culturing OA HACs (p1) in the presence or absence of dorsomorphin (10 µM). Physiological osmolarity increased TGFβ2 and TGFβ3 mRNA expression, TGFβ2 protein secretion as well as general TGFβ activity by 380 mOsm. Upon TGFβ2 isoform-specific knockdown COL2 mRNA expression was induced. TGFβ2 RNAi induced expression of several BMPs (e.g. BMP2,-4,-6) and this induction was enhanced in culture conditions with physiological osmolarity. Dorsomorphin inhibited physiological osmolarity induced COL2 mRNA expression. TGFβ2 knockdown under 380 mOsm increases COL2 expression in human osteoarthritic chondrocytes in vitromost likely through a regulatory feedback loop via BMP signaling, which is involved in osmolarity-induced COL2 expression. Future studies will further elucidate the BMP-mediated regulatory feedback loop after TGF β2 knockdown and its influence on COL2 expression


Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives

The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics.

Methods

Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant).


Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims

Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone.

Methods

A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 21 - 21
1 Oct 2015
Gumbs J Chapman N Young D Clegg P Canty-Laird E
Full Access

Introduction. Tendons are critical to mobility, and are susceptible to degeneration through injury and ageing. Type I collagen is the most abundant protein in vertebrates; it is the main structural protein of the extracellular matrix in numerous musculoskeletal tissues, including tendons. Type I collagen predominantly is a heterotrimer, which consists of two alpha-1 chains and one alpha-2 chain (α1). 2. (α2) encoded by the COL1A1 and COL1A2 genes, respectively. However, type I collagen can form homotrimers (α1). 3. which are protease-resistant, and are associated with age-related musculoskeletal diseases, fibrotic and connective tissue pathologies. Transforming growth factor beta (TGFβ) enhances collagen (I) gene expression, is involved in tendon mechanobiology and repair processes, while its effect on homotrimer formation is unknown. Our aim is to investigate the relative expressions of collagen (I) α1 and α2 polypeptide chains in tenocytes (tendon fibroblasts) stimulated with TGFβ. Materials and Methods. Included RT-qPCR to measure the relative expression of COL1A1 and COL1A2 genes. [. 14. C]-proline metabolic labelling was used to measure the expression of the collagen (I) α1 and α2 polypeptide chains. These techniques were performed in equine superficial digital flexor tendon (SDFT) tenocytes (n=3) and murine tail tendon tenocytes (n=3) with different concentrations of TGFβ (0.01 ng/ml-100 ng/ml). Results. There was an increase in both COL1A1 and COL1A2 gene expression when stimulated with TGFβ in both cell types. In equine tenocytes the gene expression ratio of COL1A1:COL1A2 increased from 1.73 ± 0.75 to 7.87 ± 2.9 (p=0.003) when stimulated with 100 ng/ml of TGFβ3. TGFβ upregulated collagen (I) protein in both cell types. In equine tenocytes (n=3) when stimulated with 100 ng/ml of TGFβ3, the α1:α2 protein chain ratio increased from 1.93 ± 0.54 to 3.02 ± 0.32 (p=0.059) in comparison with serum-starved cells, which alongside the changes in gene expression, may be indicative of collagen (I) homotrimer production. Discussion. There were biosynthetic alterations in collagen production, and putative collagen (I) homotrimer when equine tenocytes were stimulated with 100 ng/ml TGFβ3. Future work will focus isolating different collagens by repeated differential salt precipitation. The level of TGFβ receptors and Smad signaling molecules will be also analysed using RT-qPCR and western blotting


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 305 - 313
1 Mar 2013
Ribbans WJ Collins M

The incidence of acute and chronic conditions of the tendo Achillis appear to be increasing. Causation is multifactorial but the role of inherited genetic elements and the influence of environmental factors altering gene expression are increasingly being recognised. Certain individuals’ tendons carry specific variations of genetic sequence that may make them more susceptible to injury. Alterations in the structure or relative amounts of the components of tendon and fine control of activity within the extracellular matrix affect the response of the tendon to loading with failure in certain cases.

This review summarises present knowledge of the influence of genetic patterns on the pathology of the tendo Achillis, with a focus on the possible biological mechanisms by which genetic factors are involved in the aetiology of tendon pathology. Finally, we assess potential future developments with both the opportunities and risks that they may carry.

Cite this article: Bone Joint J 2013;95-B:305–13.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 71 - 71
1 Mar 2012
Giannoudis P Pountos I Morley J Perry S Pape H
Full Access

Purpose. The aim of this study was to investigate whether growth factors essential for fracture healing are released in the immediate aftermath following fracture and whether reaming of IM cavity causes increased liberation of these autocoids. Methods. Consecutive adult patients with femoral shaft fractures forming two groups (a group who received unreamed nail (n=10) and a second group who received reamed nail (n=10) were recruited for this study. Peripheral blood samples and samples from the femoral canal before and after reaming and before and after the solid nail insertion were collected. Serum was extracted and using Elisa colorimetric assays the concentration of Platelet Derived Growth Factor (PDGF), Vascular Endothelial Growth Factor (VEGF), Insulin-like Growth Factor I (IGF-I) Transforming Growth Factor beta 1 (TGF-. 2. 1) and BMP-2 levels was measured. Results. In total 20 patients were studied. The mean age was 38 years (range 20-63). Reaming substantially increased all studied growth factors locally in the femoral canal. VEGF and PDGF were increased after reaming by 111.2% and 115.6% respectively. IGF-1 was increased by 31.5% and TGF-b1 was increased by 54.2%. In the unreamed group the levels of PDGF-BB, VEGF and TGF-. 2. 1 were not changed while the levels of IGF-I were decreased by 10%. The levels of these factors in peripheral circulation were not altered despite the technique used. BMP-2 levels during all time points were below the detection limit of the immunoassay. Conclusion and significance. This study indicates that reaming of IM Canal is associated with increased liberation of growth factors. The osteogenic effect of reaming could be secondary not only to grafting debris but also to the increased liberation of these molecules


Bone & Joint 360
Vol. 1, Issue 1 | Pages 2 - 6
1 Feb 2012
Hogervorst T

Osteoarthritis is extremely common and many different causes for it have been described. One such cause is abnormal morphology of the affected joint, the hip being a good example of this. For those joints with femoroacetabular impingement (FAI) or developmental dysplasia of the hip (DDH), a link with subsequent osteoarthritis seems clear. However, far from being abnormal, these variants may be explained by evolution, certainly so for FAI, and may actually be normal rather than representing deformity or disease. The animal equivalent of FAI is coxa recta, commonly found in species that run and jump. It is rarely found in animals that climb and swim. In contrast are the animals with coxa rotunda, a perfectly spherical femoral head, and more in keeping with the coxa profunda of mankind. This article describes the evolutionary process of the human hip and its link to FAI and DDH. Do we need to worry after all?


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 277 - 277
1 May 2010
Giannoudis P Pountos I Kanakaris N Morley J Pape H
Full Access

Purpose: The aim of this study was to investigate whether growth factors essential for fracture healing are released in the immediate aftermath following fracture and whether reaming of IM cavity causes increased liberation of these autocoids. Methods: Consecutive adult patients with femoral shaft fractures forming two groups (a group who received unreamed nail (n=10) and a second group who received reamed nail (n=10) were recruited for this study. Peripheral blood samples and samples from the femoral canal before and after reaming and before and after the solid nail insertion were collected. Serum was extracted and using Elisa colorimetric assays the concentration of Platelet Derived Growth Factor (PDGF), Vascular Endothelial Growth Factor (VEGF), Insulin-like Growth Factor I (IGF-I) Transforming Growth Factor beta 1 (TGF-. 2. 1) and BMP-2 levels was measured. Results: In total 20 patients were studied. The mean age was 38 years (range 20–63). Reaming substantially increased all studied growth factors locally in the femoral canal. VEGF and PDGF were increased after reaming by 111.2% and 115.6% respectively. IGF-1 was increased by 31.5% and TGF-b1 was increased by 54.2%. In the unreamed group the levels of PDGF-BB, VEGF and TGF-. 2. 1 were not changed while the levels of IGF-I were decreased by 10%. The levels of these factors in peripheral circulation were not altered despite the technique used. BMP-2 levels during all time points were below the detection limit of the immunoassay. Conclusion and Significance: This study indicates that reaming of IM Canal is associated with increased liberation of growth factors. The osteogenic effect of reaming could be secondary not only to grafting debris but also to the increased liberation of these molecules


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 373 - 373
1 Jul 2008
Pountos I Georgouli T Perry S Morley J Giannoudis P
Full Access

Purpose: Growth factors are released and circulate in peripheral blood after fracture. The purpose of this study was to characterize the early systemic release of several growth factors following accidental fractures and surgery. Methods: 14 patients (8 male and 6 female) suffering from lower limb long bone fractures were prospectively included in the study. The mean age was 34 years (range 18-61). In all patients the time from fracture occurrence till operation was less than 24 hours. Peripheral blood samples were collected on patients’ admission, induction, and postoperatively at 1, 3 and 5 days. Serum was extracted and using Elisa colorimetric assays the concentration of Platelet Derived Growth Factor (PDGF), Vascular Endothelial Growth Factor (VEGF), Insulin-like Growth Factor I (IGF-1) and Transforming Growth Factor beta 1 (TGF-b1) was measured. Results: From fracture occurrence till induction for surgery a substantial decreased was observed (VEGF concentration was decreased by 189%, PDGF was decreased by 363%, TGF-b1 was decreased by 247 % and IGF-1 was decreased only by 25%. Surgery itself decreased VEGF peripheral levels by a further 50% and PDGF by 40 % while IGF and TGF-b1 levels remained unchanged. During the first post-operative day the levels of VEGF were increased by 82%, TGF-b1 and IGF-1 remained constant and PDGF was further decreased by 20%. Between the 1st and 3rd postoperative days VEGF was increased by 132%, PDGF by 220% and TGF-b1 by 230 %. During this period, IGF-1 was decreased by 20 %. Finally, during the 3rd to 5th postoperative day, the levels of all growth factors continue to increase. Conclusion: This study illustrates the early pattern of release of 4 growth factors following fractures and surgery. A substantial decreased during the first 24 hours was noted but thereafter an upward trend was observed. This data provide insight into the levels and kinetics of growth factors before and after surgery of fractures