Vascular inflammation and activation of myofibroblasts are significant contributors to the progression of fibrosis, which can severely impair tissue function. In various tissues, including tendons,
It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth. C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs.Aims
Methods
Introduction and Objective. Bone is a tissue which continually regenerates and also having the ability to heal after injuries however, healing of large defects requires intensive surgical treatment. Bioactive glasses are unique materials that can be utilized in both bone and skin regeneration and repair. They are degradable in physiological fluids and have osteoconductive, osteoinductive and osteostimulative properties. Osteoinductive growth factors such as Bone Morphogenetic Proteins (BMP), Vascular Endothelial Growth Factor (VEGF), Epidermal
Introduction and Objective. Chronic tendinopathy is a multifactorial disease and a common problem in both, athletes and the general population. Mechanical overload and in addition old age, adiposity, and metabolic disorders are among the risk factors for chronic tendinopathy but their role in the pathogenesis is not yet unequivocally clarified. Materials and Methods. Achilles tendons of young (10 weeks) and old (100 weeks) female rats bred for high (HCR) and low (LCR) intrinsic aerobic exercise capacity were investigated. Both Achilles tendons of 28 rats were included and groups were young HCR, young LCR, old HCR, and old LCR (n = 7 tendons per group/method). In this rat model, genetically determined aerobic exercise capacity is associated with a certain phenotype as LCR show higher body weight and metabolic dysfunctions in comparison to HCR. Quantitative real-time PCR (qPCR) was used to evaluate alterations in gene expression. For histological analysis, semi-automated image analysis and histological scoring were performed. Results. Age-related downregulation of tenocyte marker genes (Tenomodulin), genes related to matrix modelling and remodeling (Collagen type 1, Collagen type 3, Elastin, Biglycan, Fibronectin, Tenascin C), and
MicroRNA-183 ( Clinical samples were collected from patients with OA, and a mouse model of OA pain was constructed by surgically induced destabilization of the medial meniscus (DMM). Reverse transcription quantitative polymerase chain reaction was employed to measure the expression of miR-183, transforming growth factor α (TGFα), C-C motif chemokine ligand 2 (Aims
Methods
Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA. Cite this article:
Injured skeletal muscle repairs spontaneously via regeneration, however, this process is often incomplete because of fibrotic tissue formation. In our study we wanted to show improved efficiency of regeneration process induced by antifibrotic agent decorin in a combination with Platelet Rich Plasma (PRP)-derived growth factors. A novel human myoblast cell (hMC) culture, defined as CD56 (NCAM)+ developed in our laboratory, was used for evaluation of potential bioactivity of PRP and decorin. To determine the their effect on the viability of hMC we performed a MTT assay. To perform the cell proliferation assay, hMCs were separately seeded on plates at a concentration of 30 viable cells per well. Cell growth medium prepared with different concentrations of PRP exudates (5%, 10%, and 20%) and decorin (10 ng/mL, 25 ng/mL, and 50 ng/mL) were added and incubated for 7 days. After incubation we stained the cells with crystal-violet and measured the absorbance. To study the expression of
A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing. Cite this article:
Here we introduce a wide and complex study comparing effects of growth factors used alone and in combinations on human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation. Certain ways of cell behaviour can be triggered by specific peptides – growth factors, influencing cell fate through surface cellular receptors. In our study transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) were used in order to induce osteogenesis and proliferation of hMSCs from bone marrow. These cells are naturally able to differentiate into various mesodermal cell lines. Effect of each factor itself is pretty well known. We designed experimental groups where two and more growth factors were combined. We supposed cumulative effect would appear when more growth factors with the same effect were combined. The cellular metabolism was evaluated using MTS assay and double-stranded DNA (dsDNA) amount using PicoGreen assay. Alkaline phosphatase (ALP) activity, as early osteogenesis marker, was observed. Phase contrast microscopy was used for cell morphology evaluation.Aims
Methods
The role of mechanical stress and transforming growth factor beta 1 (TGF-β1) is important in the initiation and progression of osteoarthritis (OA). However, the underlying molecular mechanisms are not clearly known. In this study, TGF-β1 from osteoclasts and knee joints were analyzed using a co-cultured cell model and an OA rat model, respectively. Five patients with a femoral neck fracture (four female and one male, mean 73.4 years (68 to 79)) were recruited between January 2015 and December 2015. Results showed that TGF-β1 was significantly upregulated in osteoclasts by cyclic loading in a time- and dose-dependent mode. The osteoclasts were subjected to cyclic loading before being co-cultured with chondrocytes for 24 hours.Objectives
Methods
Tendon and ligament injuries represent highly prevalent and unmet clinical challenge that may significantly benefit from tissue engineering therapeutic strategies, once optimal cell source and biomolecules regulating tendon homeostasis are properly defined. Herein, we aimed to evaluate the expression of tendon/ligament markers in two novel cell populations, namely human dental pulp stem cells (DPSCs) and periodontal ligament cells (PDLCs), in response to supplementation with TGF-β ligands relevant for tendon development and healing, as well as under standard tri-lineage differentiation conditions. DPSCs and PDLCs were isolated from sound human permanent molars removed for orthodontic reasons. Pulp tissue and periodontal ligament were minced and digested with collagenase (3mg/mL) and cells were expanded in α-MEM supplemented with 10% fetal bovine serum (basal medium). To evaluate the susceptibility of DPSCs and PDLCs to tenogenic induction, cells were seeded at density of 1000 cells/cm2 and cultured up to 21 days in basal medium or media supplemented with TGF-β3 (10ng/ml), or GDF-5 (50 ng/ml). Cell response was evaluated weakly by analysis of expression of tendon, bone and cartilage markers, employing real time RT-PCR and immunocytochemistry. A significant increase in collagen I and collagen III expression was observed with the culture progression in all conditions, with abundant matrix being deposited by day 14. A significant upregulation of scleraxis expression was demonstrated in response to supplementation with TGF-β3 in both cell populations, when compared to basal medium and medium with GDF-5. It was concluded that TGF-β3 may represent an effective inducer of stem cell tenogenic differentiation.
As cartilage has poor intrinsic repair capacity, in vitroexpansion of human articular chondrocytes (HACs) is required for cell-based therapies to treat cartilage pathologies. During standard expansion culture (i.e. plasma osmolarity, 280 mOsm) chondrocytes inevitably lose their specific phenotype and de-differentiate, which makes them inappropriate for autologous chondrocyte implantation. It has been shown that physiological osmolarity (i.e. 380 mOsm) increases collagen type II (COL2) expression in vitro, but the underlying molecular mechanism is unknown.
The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student Objectives
Methods
Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis.Aims
Methods
Introduction. Tendons are critical to mobility, and are susceptible to degeneration through injury and ageing. Type I collagen is the most abundant protein in vertebrates; it is the main structural protein of the extracellular matrix in numerous musculoskeletal tissues, including tendons. Type I collagen predominantly is a heterotrimer, which consists of two alpha-1 chains and one alpha-2 chain (α1). 2. (α2) encoded by the COL1A1 and COL1A2 genes, respectively. However, type I collagen can form homotrimers (α1). 3. which are protease-resistant, and are associated with age-related musculoskeletal diseases, fibrotic and connective tissue pathologies.
The incidence of acute and chronic conditions
of the tendo Achillis appear to be increasing. Causation is multifactorial
but the role of inherited genetic elements and the influence of
environmental factors altering gene expression are increasingly
being recognised. Certain individuals’ tendons carry specific variations
of genetic sequence that may make them more susceptible to injury.
Alterations in the structure or relative amounts of the components
of tendon and fine control of activity within the extracellular
matrix affect the response of the tendon to loading with failure
in certain cases. This review summarises present knowledge of the influence of
genetic patterns on the pathology of the tendo Achillis, with a
focus on the possible biological mechanisms by which genetic factors
are involved in the aetiology of tendon pathology. Finally, we assess
potential future developments with both the opportunities and risks
that they may carry. Cite this article:
Purpose. The aim of this study was to investigate whether growth factors essential for fracture healing are released in the immediate aftermath following fracture and whether reaming of IM cavity causes increased liberation of these autocoids. Methods. Consecutive adult patients with femoral shaft fractures forming two groups (a group who received unreamed nail (n=10) and a second group who received reamed nail (n=10) were recruited for this study. Peripheral blood samples and samples from the femoral canal before and after reaming and before and after the solid nail insertion were collected. Serum was extracted and using Elisa colorimetric assays the concentration of Platelet Derived Growth Factor (PDGF), Vascular Endothelial Growth Factor (VEGF), Insulin-like Growth Factor I (IGF-I)
Osteoarthritis is extremely common and many different causes for it have been described. One such cause is abnormal morphology of the affected joint, the hip being a good example of this. For those joints with femoroacetabular impingement (FAI) or developmental dysplasia of the hip (DDH), a link with subsequent osteoarthritis seems clear. However, far from being abnormal, these variants may be explained by evolution, certainly so for FAI, and may actually be normal rather than representing deformity or disease. The animal equivalent of FAI is coxa recta, commonly found in species that run and jump. It is rarely found in animals that climb and swim. In contrast are the animals with coxa rotunda, a perfectly spherical femoral head, and more in keeping with the coxa profunda of mankind. This article describes the evolutionary process of the human hip and its link to FAI and DDH. Do we need to worry after all?
Purpose: The aim of this study was to investigate whether growth factors essential for fracture healing are released in the immediate aftermath following fracture and whether reaming of IM cavity causes increased liberation of these autocoids. Methods: Consecutive adult patients with femoral shaft fractures forming two groups (a group who received unreamed nail (n=10) and a second group who received reamed nail (n=10) were recruited for this study. Peripheral blood samples and samples from the femoral canal before and after reaming and before and after the solid nail insertion were collected. Serum was extracted and using Elisa colorimetric assays the concentration of Platelet Derived Growth Factor (PDGF), Vascular Endothelial Growth Factor (VEGF), Insulin-like Growth Factor I (IGF-I)
Purpose: Growth factors are released and circulate in peripheral blood after fracture. The purpose of this study was to characterize the early systemic release of several growth factors following accidental fractures and surgery. Methods: 14 patients (8 male and 6 female) suffering from lower limb long bone fractures were prospectively included in the study. The mean age was 34 years (range 18-61). In all patients the time from fracture occurrence till operation was less than 24 hours. Peripheral blood samples were collected on patients’ admission, induction, and postoperatively at 1, 3 and 5 days. Serum was extracted and using Elisa colorimetric assays the concentration of Platelet Derived Growth Factor (PDGF), Vascular Endothelial Growth Factor (VEGF), Insulin-like Growth Factor I (IGF-1) and