Advertisement for orthosearch.org.uk
Results 1 - 19 of 19
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment. Cite this article: Bone Joint Res 2024;13(12):725–740


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 44 - 44
11 Apr 2023
Medesan P Chen Y Rust P Mearns-Spragg A Paxton J
Full Access

Jellyfish collagens exhibit auspicious perspectives for tissue engineering applications primarily due to their outstanding compatibility with a wide range of cell types, low immunogenicity and biodegradability. Furthermore, derived from a non-mammalian source, jellyfish collagens reduce the risk of disease transmission, minimising therefore the ethical and safety concerns. The current study aims to investigate the potential of 3-dimensional jellyfish collagen sponges (3D-JCS) in promoting bone tissue regeneration. Both qualitative and quantitative analyses were performed in order to assess adhesion and proliferation of MC3T3 cells on 3D-JCL, as well as cell migration and bone-like ECM production. Histological and fluorescent dyes were used to stain mineral deposits (i.e. Alizarin Red S (ARS), Von Kossa, Tetracycline hydrochloride) while images were acquired using optical and confocal microscopy. Qualitative data indicated successful adhesion and proliferation of MC3T3 cells on the 3D-JCS as well as cell migration along with ECM production both on the inner and outer surface of the scaffolds. Moreover, quantitative analyses indicated a four-fold increase of ARS uptake between 2- and 3-dimensional cultures (N=3) as well as an eighteen-fold increase of ARS uptake for the 3D-JCS (N=3) when cultured in osteogenic conditions compared to control. This suggests the augmented osteogenic potential of MC3T3 cells when cultured on 3D-JCS. Nevertheless, the cell-mediated mineral deposition appeared to alter the mechanical properties of the jellyfish collagen sponges that were previously reported to exhibit low mechanical properties (compressive modulus: 1-2 kPa before culture). The biocompatibility, high porosity and pore interconnectivity of jellyfish collagen sponges promoted adhesion and proliferation of MC3T3 cells as well as cell migration and bone-like ECM production. Their unique features recommend the jellyfish collagen sponges as superior biomaterial scaffolds for bone tissue regeneration. Further studies are required to quantify the change in mechanical properties of the cell-seeded scaffolds and confirm their suitability for bone tissue regeneration. We predict that the 3D-JCS will be useful for future studies in both bone and bone-tendon interface regeneration. Acknowledgments. This research has been supported by a Medical Research Scotland Studentship award (ref: -50177-2019) in collaboration with Jellagen Ltd


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 35 - 35
1 Mar 2021
Montalbano G Molino G Niclot F De Maria C Vozzi G Belmonte M Licini C Ciapetti G Borciani G Fiorilli S Brovarone C
Full Access

Bone tissue engineering is a promising strategy to treat the huge number of bone fractures caused by progressive population ageing and diseases i.e., osteoporosis. The bioactive and biomimetic materials design modulating cell behaviour can support healthy bone tissue regeneration. In this frame, type I collagen and hydroxyapatite (HA) have been often combined to produce biomimetic scaffolds. In addition, mesoporous bioactive glasses (MBGs) are known for their ability to promote the deposition of HA nanocrystals and their potential to incorporate and release therapeutic ions. Furthermore, the use of 3D printing technologies enables the effective design of scaffolds reproducing the natural bone architecture. This study aims to design biomimetic and bioactive 3D printed scaffolds that mimic healthy bone tissue natural features in terms of chemical composition, topography and biochemical cues. Optimised collagenous hybrid systems will be processed by means of extrusion 3D printing technologies to obtain high resolution bone-like structures. Protocols of human co-cultures of osteoblasts and osteoclasts will be developed and used to test the 3D scaffolds. Type I collagen has been combined with rod-like nano-HA and strontium containing MBGs (micro- and nano-sized particles) in order to obtain hybrid systems resembling the composition of native bone tissue. A comprehensive rheological study has been performed to investigate the potential use of the hybrid systems as biomaterial inks. Mesh-like structures have been obtained by means of extrusion-based technologies exploiting the freeform reversible embedding of suspended hydrogels (FRESH) approach. Different crosslinking methods have been tested to improve final constructs mechanical properties. Both crosslinked and non-crosslinked biomaterials were cultured with human osteoblasts and osteoclasts to assay the hybrid matrix biocompatibility as well as its influence on cell behaviour. Homogeneous hybrid systems have been successfully developed and characterised, proving their suitability as biomaterial inks for 3D printing technologies. Mesh-like structures have been extruded in a thermo-reversible gelatine slurry, exploiting the sol-gel transition of the systems under physiological conditions. Covalent bonds between collagen molecules have been promoted by genipin treatment, leading to a significant increase in matrix strength and stability. The collagen methacrylation and the further UV-crosslinking are under investigation as alternative promising method to reinforce the 3D structure during the printing process. Biological tests showed the potential of the developed systems especially for genipin treated samples, with a significant adhesion of primary cells. Collagenous hybrid systems proved their suitability for bioactive 3D printed structures design for bone tissue engineering. The multiple stimuli provided by the scaffold composition and structure will be investigated on both direct and indirect human osteoblasts and osteoclasts co-culture, according to the developed protocols


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 73 - 73
1 Dec 2020
Turemis C Gunes OC Baysan G Perpelek M Albayrak AZ Havitcioglu H
Full Access

Bone fractures are highly observed clinical situation in orthopaedic treatments. In some cases, there might be non-union problems. Therefore, recent studies have focused on tissue engineering applications as alternative methods to replace surgical procedures. Various biopolymer based scaffolds are produced using different fabrication techniques for bone tissue engineering applications. In this study, hydroxyapatite (HAp) and loofah containing carboxymethyl chitosan (CMC) scaffolds were prepared. In this regard, first 4 ml of CMC solution, 0.02 g of hydroxyapatite (HAP) and 0.06 g of poly (ethylene glycol) diglycidyl ether (PEGDE) were mixed in an ultrasonic bath until the HAp powders were suspended. Next, 0.04 g of loofah was added to the suspension and with the help of PEGDE as the cross-linking agent, then, the mixture was allowed to cross-link at 40. o. C overnight. Finally, the three-dimensional, porous and sponge-like scaffolds were obtained after lyophilization (TELSTAR - LyoQuest −85) at 0.1 mbar and −25°C for 2 days. Morphologies, chemical structures and thermal properties of the scaffolds were characterized by scanning electron microscopy (SEM), Fourier Transform infrared spectroscopy (FT-IR) and thermogravimetric differential thermal analysis (TGA/DTA), respectively. In addition, swelling behavior and mechanical properties of the scaffolds under compression loading were determined. In order to investigate biocompatibility of the scaffolds, WST-1 colorimetric assay at days 0, 1, 3, 5 and 7 was conducted by using human dermal fibroblast. Also, histological and morphological analysis were performed for cell attachment at day 7. In conclusion, the produced scaffolds showed no cytotoxic effect. Therefore, they can be considered as a candidate scaffold for bone tissue regeneration. Further studies will be performed by using bone marrow and periosteum derived mesenchymal stem cells with these scaffolds


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 361 - 364
1 Apr 2019
Rodeo SA

Stem cells are defined by their potential for self-renewal and the ability to differentiate into numerous cell types, including cartilage and bone cells. Although basic laboratory studies demonstrate that cell therapies have strong potential for improvement in tissue healing and regeneration, there is little evidence in the scientific literature for many of the available cell formulations that are currently offered to patients. Numerous commercial entities and ‘regenerative medicine centres’ have aggressively marketed unproven cell therapies for a wide range of medical conditions, leading to sometimes indiscriminate use of these treatments, which has added to the confusion and unpredictable outcomes. The significant variability and heterogeneity in cell formulations between different individuals makes it difficult to draw conclusions about efficacy. The ‘minimally manipulated’ preparations derived from bone marrow and adipose tissue that are currently used differ substantially from cells that are processed and prepared under defined laboratory protocols. The term ‘stem cells’ should be reserved for laboratory-purified, culture-expanded cells. The number of cells in uncultured preparations that meet these defined criteria is estimated to be approximately one in 10 000 to 20 000 (0.005% to 0.01%) in native bone marrow and 1 in 2000 in adipose tissue. It is clear that more refined definitions of stem cells are required, as the lumping together of widely diverse progenitor cell types under the umbrella term ‘mesenchymal stem cells’ has created confusion among scientists, clinicians, regulators, and our patients. Validated methods need to be developed to measure and characterize the ‘critical quality attributes’ and biological activity of a specific cell formulation. It is certain that ‘one size does not fit all’ – different cell formulations, dosing schedules, and culturing parameters will likely be required based on the tissue being treated and the desired biological target. As an alternative to the use of exogenous cells, in the future we may be able to stimulate the intrinsic vascular stem cell niche that is known to exist in many tissues. The tremendous potential of cell therapy will only be realized with further basic, translational, and clinical research.

Cite this article: Bone Joint J 2019;101-B:361–364.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 71 - 71
1 Apr 2018
Tai IC Wang YH Ho ML
Full Access

In therapeutic bone repairs, autologous bone grafts, conventional or vascularized allografts, and biocompatible artificial bone substitutes all have their shortcomings. Tissue engineering may be an alternative for cranial bone repair. Titanium (Ti) and its alloys are widely used in many clinical devices because of perfect biocompatibility, highly corrosion resistance and ideal physical properties. An important progress in treating bone defects has been the introduction of bone morphogenetic proteins (BMPs), specifically BMP-2. The proteins induce osteogenic cell differentiation in vitro, as well as bone defect healing in vivo. In this study, we fabricated the titanium plate with dioxide creating by microarc oxidation (MAO) and then electronic deposition of Ca.P that can carrier recombinant human bone morphogenetic protein-2 (rhBMP-2) to enhance osteogenesis in vitro and bone formation in vivo. The rhBMP-2 was controlled released from MAO-Ca.P-rhBMP2 implant was maintain within 35days longer than Ti without MAO modification group and without CaP electronic deposition group. In addition, the in vitro results revealed that the bioactivity of rhBMP-2 released from MAO-Ca.P-rhBMP2 implant with an ideal therapeutic dose was well maintained. In vivo, the critical-sized defect (20-mm diameter) of New Zealand White rabbits was used to experiment. We concluded that sustained controlled-release of rhBMP-2 above a therapeutic dose could induce osseointegration between the implant and surrounding bone the rate of bone formation into the implant and produce neovascularization. Our study combined the concept of osteoconductive and osteoinductive to do the bone tissue regeneration


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 116 - 116
1 Jan 2017
Maurel D Le Nihouannen D Aid R Delmond S Letourneur D Amédée J Catros S
Full Access

Bone grafts are crucial for the treatment of bone defects caused by tumor excision. The gold standard is autograft but their availability is limited. Allografts are an alternative, but there is a risk of rejection by the immune system. The tissue engineering field is trying to develop vascularized bone grafts, using innovative biomaterials for surgery applications. While the gold standard in bone graft in dentistry is the use of decellularized bovine bone particles (Bio-Oss®), our work has produced a polysaccharide-based composite matrix (composed of PUllulan, DextraNand particles of HydroxyApatite (PUDNHA), as a new scaffold for promoting bone formation and vascularization of the tissue. In the context of bone tissue regeneration, the function of osteoblast and endothelial cells has been extensively studied, while the impact of osteocytes has been regarded as secondary. Nonetheless, the osteocytes represent 90–95% of bone cells and are responsible for orchestration of bone remodeling. Here, we propose an original method to analyze the interaction between bone and biomaterials, after in vivo implantation of the matrix PUDNHA in an experimental sheep model. Our objectives are to analyze the network established by osteocytes in the newly formed tissue induced by the matrix, as well as their interactions with the blood vessels. Sheep have been implanted with the Bio-Oss® or the PUDNHA using the sinus lift technique. After 3 (3M) and 6 months (6M), the animals were euthanazied and the explants were fixed, analyzed by X-ray, embedded in Methylmetacrylate/Buthylmetacrylate and analyzed histologically by Trichrome staining. Thereafter, the samples (n=3/group) were polished using different sand papers. A final polish was realized using a 1µm Diamond polishing compound. The blocks were incubated 10 or 30s with 37% phosphoric acid to remove the mineral on the surface, then dipped in 2.6% sodium hypochlorite to remove the collagen. The samples were air dried overnight, metallized with Gold palladium the following day, before being imaged with a SEM. As expected, PUDNHA activates bone regeneration in this sinus lift model after 3M and 6M. X-ray analysis and histological data revealed more bone regeneration at 6M versus 3M in both groups. With this acid eching technique, we were able to visualize the interface of bone with the biomaterials. This treatment coupled with SEM analysis, confirmed the increase of bone formation with time of implantation in both groups. In addition, SEM images revealed that osteocyte alignment and their network were different in the new regenerated bone compared to the host bone. Moreover, images showed the direct contact of the osteocytes with the blood vessels formed in the new regenerated bone. This acid eching technique can be useful in the field of biomaterials to see the relationship between cells, blood vessels and the material implanted and understand how the new bone is forming around the different biomaterials


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 38 - 38
1 Jan 2017
Ehret C Sagardoy T Siadous R Bareille R De Mones E Amedee J Aid R Letourneur D Pechev S Etienne L
Full Access

Worldwide 500,000 cases of maxillofacial cancer are diagnosed each year. After surgery, the reconstruction of large bone defect is often required. The induced membrane approach (Masquelet, 2000) is one of the strategies, but exhibits limitations in an oncological context (use of autografts with or without autologous cells and Bone Morphogenetic Proteins). The objectives of this work are to develop an injectable osteoinductive and osteoconductive composite matrix composed of doped strontium (Sr) hydroxyapatite (HA) particles dispersed within a polysaccharide scaffold, to evaluate in vitro their ability to stimulate osteoblastic differentiation of human mesenchymal stem cells (hMSC) and to stimulate in vivo bone tissue regeneration. HA particles were synthesized with different ratios of Sr. X-ray diffraction (XRD), Inductively Coupled Plasma (ICP), and particle size analysis (Nanosizer™) were used to characterize these particles. HA and Sr-doped HA were dispersed at different ratios within a pullulan-dextran based matrices (Autissier, 2010), Electronic scanning microscopy Back Scattering Electron microscopy (ESEM-BSE) and ICP were used to characterize the composite scaffolds. In vitro assays were performed using hMSC (cell viability using Live/Dead assay, expression of osteoblastic markers by quantitative Polymerase Chain Reaction). Matrices containing these different particles were implanted subcutaneously in mice and analyzed by Micro-Computed Tomography (micro-CT) and histologically (Masson's trichrome staining) after 2 and 4 weeks of implantation. XRD analysis was compatible with a carbonated hydroxyapatite and patterns of Sr-doped HA are consistent of Sr substitution on HA particles. Morphological evaluation (TEM and Nanosizer™) showed that HA and Sr-doped HA particles form agglomerates (150 nm to 4 µm). Matrices composed with different ratios of HA or Sr-doped-HA, exhibit a homogenous distribution of the particles (ESEM-BSE), whatever the conditions of substitution. In vitro studies revealed that Sr-doped HA particles within the matrix stimulates the expression of osteoblastic markers, compared to non-doped HA matrices. Subcutaneous implantation of the matrices demonstrated the formation of a mineralized tissue. Quantitative analyses show that the mineralization of the implants is dependent of the amount of HA particles dispersed, with an optimal ratio of 5% of particles. Histological analysis revealed osteoid tissue in contact to the matrix. In conclusion, the ability of this injectable composite scaffold to promote ectopically tissue mineralization is promising for bone tissue engineering. Osseous implantation in a femoral bone defect in rats is now in progress. 5% of doped HA particles were implanted within the induced membranes in a context of radiotherapy procedure. Micro-CT analyses are ongoing. This new matrix could represent an alternative to the autografts for the regeneration of large bone defects in an oncological context


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 187 - 187
1 Jul 2014
Moore S Saidel G Tate MK
Full Access

Summary Statement. A coupled finite element - analytical model is presented to predict and to elucidate a clinical healing scenario where bone regenerates in a critical-sized femoral defect, bounded by periosteum or a periosteum substitute implant and stabilised via an intramedullary nail. Introduction. Bone regeneration and maintenance processes are intrinsically linked to mechanical environment. However, the cellular and subcellular mechanisms of mechanically-modulated bone (re-) generation are not fully understood. Recent studies with periosteum osteoprogenitor cells exhibit their mechanosensitivity in vitro and in situ. In addtion, while a variety of growth factors are implicated in bone healing processes, bone morphogenetic protein-2 (BMP-2) is recognised to be involved in all stages of bone regeneration. Furthermore, periosteal injuries heal predominantly via endochondral ossification mechanisms. With this background in mind, the current study aims to understand the role of mechanical environment on BMP-2 production and periosteally-mediated bone regeneration. The one-stage bone transport model [1] provides a clinically relevant experimental platform on which to model the mechanobiological process of periosteum-mediated bone regeneration in a critical-sized defect. Here we develop a model framework to study the cellular-, extracellular- and mechanically-modulated process of defect infilling, governed by the mechanically-modulated production of BMP-2 by osteoprogenitor cells located in the periosteum. Methods. Material properties of the healing callus and periosteum contribute to the strain stimulus sensed by osteoprogenitor cells therein. Using a mechanical finite element model, periosteal surface strains are first predicted as a function of callus properties. Strains are then input to a mechanistic mathematical model, where mechanical regulation of BMP-2 production mediates rates of cellular proliferation, differentiation and extracellular matrix (ECM) production, to predict healing outcomes. A parametric approach enables the spatial and temporal prediction of tissue regeneration via endochondral ossification. Predictions are compared with experimental, micro-computed tomographic and histologic, measures of cartilage and mineralised bone tissue regenerates. Model Predictions in Light of Experimental Case Studies: A validated baseline model predicts defect healing via cellular egression, extracellular matrix production and endochondral ossification, using parameters optimised to mimic experimental outcome measures at initial and final stages of healing. To elucidate which predictive model paramenters result in the intrinsic differences in experimental outcomes between defects bounded by either periosteum in situ or a periosteum substitute implant, model parameters are then varied by orders of magnitude to determine which factors exert dominant influence on achievement of experimentally relevant ECM area outcomes. Considering the complete set of parameters relevant to healing, the rate of osteoprogenitor to osteoblast differentiation, as well as rates of chondrocyte and osteoblast proliferation must be reduced and ECM production by chondrocytes must be increased from baseline, to achieve healing outcomes analogous to those observed in experiments. Discussion/Conclusion. The novel model framework presented here integrates a mechanistic feedback system, based on the mechanosensitivity of periosteal osteoprogenitor cells, which allows for modeling and prediction of tissue regeneration on multiple length and time scales


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_10 | Pages 15 - 15
1 Jul 2014
Tierney E Curtin CM Cryan S Duffy G O'Brien F
Full Access

Gene-activated scaffolds have shown potential in localised gene delivery resulting in bone tissue regeneration. In this study, the ability of two gene delivery vectors, polyethyleneimine (PEI) and nano-hydroxyapatite (nHA), to act as carriers for the delivery of therapeutic genes when combined with our collagen-nHA (coll-nHA) scaffolds to produce gene-activated scaffolds [1, 2], was determined. In addition, coll-nHA-dual gene scaffolds containing both an angiogenic gene and an osteogenic gene were assessed for bone healing in an in vivo Wistar rat calvarial defect model. When cells were applied to the coll-nHA scaffolds under osteogenic conditions in vitro, the dual scaffolds exhibited significantly superior osteogenic potential when analysed using microCT, calcium quantification and histology compared to single-gene scaffolds and gene-free controls. When the dual scaffolds were assessed in vivo, the nHA dual scaffold outperformed all other groups as early as 4 weeks post-implantation as determined using X-ray, microCT, quantification of new bone volume, histology and vessel formation. This research has demonstrated the potential of using novel coll-nHA scaffolds for therapeutic gene therapy while also being capable of simultaneously delivering numerous genes. This study underlines the effect of specifically tailoring gene-activated scaffolds for bone regeneration applications


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 48 - 48
1 Dec 2013
Detsch R Fey T Greil P Chen Q Boccaccini AR
Full Access

Biomaterials used in regenerative medicine should be able to support and promote the growth and repair of natural tissues. Bioactive glasses (BGs) have a great potential for applications in bone tissue engineering [1, 2]. As it is well known BGs can bond to host bone and stimulate bone cells toward osteogenesis. Silicate BGs, e.g. 45S5 Bioglass® (composition in wt.%: 45 SiO. 2. , 6 P. 2. O. 5. , 24, 5 Na. 2. O and 24.5 CaO), exhibit positive characteristics for bone engineering applications considering that reactions on the material surface induce the release of critical concentrations of soluble Si, Ca, P and Na ions, which can lead to the up regulation of different genes in osteoblastic cells, which in turn promote rapid bone formation. BGs are also increasingly investigated for their angiogenic properties. This presentation is focused on cell behavior of osteoblast-like cells and osteoclast-like cells on BGs with varying sample geometry (including dense discs for material evaluation and coatings of highly porous Al. 2. O. 3. -scaffolds as an example of load-bearing implants). To obtain mechanically competent porous samples with trabecular architecture analogous to those of cancellous bone, in this study Al. 2. O. 3. scaffolds were fabricated by the well-known foam replication method and coated with Bioglass® by dip coating. The resulted geometry and porosity were proven by SEM and μCT. Originating from peripheral blood mononuclear cells formed multinucleated giant cells, i.e. osteoclast-like cells, after 3 weeks of stimulation with RANKL and M-CSF. Thus, the bioactive glass surface can be considered a promising material for bone healing, providing a surface for bone remodeling. Osteoblast-like cells and bone marrow stromal cells were seeded on dense bioactive glass substrates and coatings showing an initial inhibited cell attachment but later a strong osteogenic differentiation. Additionally, cell attachment and differentiation studies were carried out by staining cytoskeleton and measuring specific alkaline phosphatase activity. In this context, 45S5 bioactive glass surfaces can be considered a highly promising material for bone tissue regeneration, providing very fast kinetics for bone-like hydroxyapatite formation (mineralization). Our examinations revealed good results in vitro for cell seeding efficacy, cell attachment, viability, proliferation and cell penetration onto dense and porous Bioglass®-coated scaffolds. Recent in vivo investigations [3] have revealed also the angiogenic potential of bioactive glass both in particulate form and as 3D scaffolds confirming the high potential of BGs for bone regeneration strategies at different scales. Implant surfaces based on bioactive glasses offer new opportunities to develop these advanced biomaterials for the next generation of implantable devices and tissue scaffolds with desired tissue-implant interaction


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 111 - 111
1 Sep 2012
Dallari D Del Piccolo N Savarino L Fantasia R Rani N Stagni C
Full Access

Introduction. We evaluated the osteogenic potential of a novel biomimetic bone paste (DBSint®), made of a combination of a human demineralized bone matrix (hDBM) and a nano-structured magnesium-enriched hydroxyapatite (Mg-HA), in a standardized clinical model of high tibial osteotomy for genu varus. Methods. A prospective, randomized, controlled study was performed and thirty patients were enrolled and assigned to three groups: DBSint® (Group I), nano-structured Mg-HA (SINTlife®) (Group II) and lyophilized-bone-chips (Group III). Six weeks after surgery, computed tomography-guided biopsies of the grafts were performed. Clinical/radiographic evaluation was performed at six weeks, twelve weeks, six months, one and 2 year after surgery, in order to verify if the graft type influenced the healing rate. Results. By histomorphometry, DBSint® was shown able to promote a quick and effective bone tissue regeneration, superior to the healing process occurred in presence of SINTlife® and lyophilized bone chips. At a mean follow up of 32,59 months, no statistical differences between the groups were found, both pre-and post-operatively, according to the Knee Society Scoring System. Mean time of ostointegration was 3,9 months in the DBSint® group, 4,2 months in the lyophilized-bone group and 4,5 in the SINTlife® group. Discussion/conclusion. Orthopedic practice may be adversely affected by an inadequate bone repair that might compromise the success of surgery. Therapy for bone regeneration with DBSint® could be particularly attractive in the treatment of patients with bone defects difficult to heal, where it could shorten the period necessary for bone regeneration, due to the higher osteogenetic potential


Bone & Joint Research
Vol. 1, Issue 7 | Pages 145 - 151
1 Jul 2012
Sharma A Meyer F Hyvonen M Best SM Cameron RE Rushton N

Objectives

There is increasing application of bone morphogenetic proteins (BMPs) owing to their role in promoting fracture healing and bone fusion. However, an optimal delivery system has yet to be identified. The aims of this study were to synthesise bioactive BMP-2, combine it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide) (α-TCP/PLGA) nanocomposite and study its release from the composite.

Methods

BMP-2 was synthesised using an Escherichia coli expression system and purified. In vitro bioactivity was confirmed using C2C12 cells and an alkaline phosphatase assay. The modified solution-evaporation method was used to fabricate α-TCP/PLGA nanocomposite and this was characterised using X-ray diffraction and scanning electron microscopy. Functionalisation of α-TCP/PLGA nanocomposite by adsorption of BMP-2 was performed and release of BMP-2 was characterised using an enzyme-linked immunosorbent assay (ELISA).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 3 - 3
1 May 2012
EL-Gendy R Boccaccini A Newby P Kirkham J Yang X
Full Access

Stromal cells derived from human dental pulp (HDPSCs) are of current interest for applications in skeletal tissue engineering. Angiogenesis and revascularization of bone grafts or bone constructs in vivo are of paramount importance for bone tissue regeneration and/or fracture healing. The aim of this study was to investigate the angiogenic and osteogenic potential of HDPSCs in combination with Bioglass¯ scaffolds in vitro and in vivo. HDPSCs, isolated by collagenase digestion, were either maintained as monolayers or dynamically seeded on 3D Bioglass¯ scaffolds and cultured under either basal or osteogenic conditions for 2 and 4 weeks. Expression of osteogenic (COL1A1, ALP, RUNX2 and OC) and angiogenic markers (VEGFR2, CD34 and PECAM1) was determined using qRT-PCR. Alternatively, constructs were either cultured in vitro under basal/osteogenic conditions for 6 weeks or sealed in diffusion chambers which were then implanted intraperitoneally in immunosuppressed mice for 8 weeks. Retrieved constructs were fixed and embedded for histology and immunohistochemistry using antibodies against COL1, RUNX2, OC, VEGFR2, CD34 and PECAM1. qRT-PCR showed no significant differences in gene expression of osteogenic markers between basal and osteogenic media for both 3D construct and monolayers. However when comparing 3D constructs to monolayers: COL1A1 showed a significantly lower expression (p< 0.05) in 3D compared to 2D at 2 weeks in both culture conditions, and this pattern was reversed after 4 weeks. ALPL was significantly lower in 3D constructs at 2 weeks under both conditions (p<0.01), and was significantly higher in basal conditions at 4 weeks (p<0.05). RUNX2 showed higher expression in 3D constructs at all time points and under both conditions while OC showed lower expression in 3D constructs at 2 weeks and higher expression at 4 weeks under both conditions. For the angiogenic markers, 3D constructs under osteogenic conditions showed an increase of expression in VEGFR2 and PECAM1 at 2 weeks followed by a decrease at week 4, while CD34 expression was undetected in 3D constructs at all times and under both sets of culture conditions. The expression of VEGFR2 and PECAM 1 under both conditions and at both time points was greater in 3D constructs compared to monolayers. After 8 weeks, the in vivo retrieved constructs showed no signs of inflammatory reactions. Immunohistology confirmed positive staining of osteogenic and angiogenic markers in 3D constructs from both in vitro and in vivo experiments with a greater staining intensity seen in the in vivo constructs. Furthermore, the in vivo constructs showed more intense sirius red staining and higher intensity of immunostaining using antibodies to type 1 collagen, with higher calcification as indicated by alizarin red staining. In conclusion, this study indicated that a combination of HDPSCs and Bioglass¯ scaffolds has potential to provide a suitable microenvironment for angiogenic and osteogenic differentiation of HDPSCs which is essential for bone regeneration in preclinical and/or clinical applications


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 23 - 23
1 May 2012
Sharma A Meyer F Hyvonen M Best S Rushton N Cameron R
Full Access

Introduction. The annual incidence of fractures in the UK is almost 4%. Bone grafting procedures and segmental bone transport have been employed for bone tissue regeneration. However, their limited availability, donor site morbidity and increased cost mean that there is still a large requirement for alternative methods and there is considerable research into regeneration using bone morphogenetic proteins (BMPs). The aims of this study are to synthesise and combine BMP-2 with a novel nanocomposite and study its release. Materials and Methods. BMP-2 was synthesised using an E. coli expression system and purified. C2C12 cells were used to test its bioactivity using an alkaline phosphatase (ALP) assay. The modified solution evaporation method was used to fabricate 30% a-TCP/PLGA nanocomposite and it was characterized using SEM, TEM, TGA, XRD, EDX and particle size analysis. The release pattern of adsorbed BMP-2 was studied using an ELISA assay. Results. SEM suggests that there was a homogeneous distribution of a-TCP nanoparticles within the PLGA matrix. The concentration of BMP-2 adsorbed onto a-TCP/PLGA nanocomposites directly correlated with the incubation concentration of BMP-2. Approximately 10-15% of BMP-2 was adsorbed on to the discs, up to an incubation concentration of 25 μg/ml. At a higher incubation concentration (50 μg/ml), however, only 4% of the BMP-2 appears to have been adsorbed. The ALP activity shows that the BMP-2 was bioactive and successfully adsorbed onto the surface of the a-TCP/PLGA nanocomposite. A burst release pattern of BMP-2 was observed over 24h, being maximal at 2 h. Discussion. Increasing incubation concentrations of BMP-2 resulted in an increase of detected adsorbed BMP-2 on the discs, however this was not observed at the highest incubation concentration (50 μg/ml). As adsorption of BMP-2 onto the ground surface of the a-TCP/PLGA nanocomposite occurs primarily through electrostatic interactions between cationic BMP-2 and anionic a-TCP, this might reflect saturation in adsorption secondary to saturation of surface anionic a-TCP by BMP-2, or heterogeneity of the discs' content and/or surface area. Adsorbed BMP-2 was shown to have bioactivity which significantly increased with increasing incubation concentrations of BMP-2 and suggests this nanocomposite could have osteoinductive potential in-vivo. The burst pattern of BMP-2 release has been shown previously from BMP adsorbed onto mPCL/collagen/HA composite and this significantly increased the bone formation of critical-sized defects. Whilst a more sustained release profile of BMP-2 is generally considered desirable, this nanocomposite of a-TCP/PLGA has been shown to possess some osteoconductive and weak osteoinductive properties itself (unpublished). The addition of BMP-2 to the nanocomposite by adsorption results in an early burst release, which can promote the differentiation of mesenchymal cells into osteoblasts. The proliferation of these might then be sustained by the nanocomposite itself, without the need for sustained delivery of BMP-2. Conclusions. Bioactive BMP-2 was synthesised and combined with a-TCP/PLGA nanocomposite, producing a biodegradable and osteoinductive material which has potential for use in bone regeneration


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 128 - 128
1 May 2012
Uzun H James B Dunstan C Wu C Ramaswamy Y Paschalidis A Zreiqat H Little D McDonald M
Full Access

Developing biomaterials for bone regeneration that are highly bioactive, resorbable and mechanically strong remains a challenge. Zreiqat's lab recently developed novel scaffolds through the controlled substitution of strontium (Sr) and zinc (Zn) into calcium silicate, to form Sr-Hardystonite and Hardystonite, respectively and investigated their in vivo biocompatibility and osteoconductivity. We synthesized 3D scaffolds of Sr-Hardystonite, Hardystonite and compared them to the clinically used tricalcium phosphate (micro-TCP) (6 × 6 × 6 mm) using a polyurethane foam template to produce a porous scaffold. The scaffolds were surgically implanted in the proximal tibial metaphysis of each tibia of Female Wistar rats. Animals were sacrificed at three weeks and six weeks post-implantation and bone formation and scaffold resorption were assessed by microcomputed tomography (micro-CT) histomorphometry and histology. Histological staining on undecalcified sections included Toluidine blue, tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP). The bone formation rate and mineral apposition rate will be determined by analysing the extent and separation of fluorescent markers by fluorescent microscopy micro-CT results revealed higher resorbability of the developed scaffolds (Sr-Hardystonite and Hardystonite) which was more pronounced with the Sr-Hardystonite. Toluidine blue staining revealed that the developed ceramics were well tolerated with no signs of rejection, necrosis, or infection. At three weeks post implantation, apparent bone formation was evident both at the periphery and within the pores of the all the scaffolds tested. Bone filled in the pores of the Sr- Hardystonite and Hardystonite scaffolds and was in close contact with the ceramic. In contrast, the control scaffolds showed more limited bone ingrowth and a cellular layer separating the ceramic scaffolds from the bone. By six weeks the Hardystonite and Sr Hardystonite scaffolds were integrated with the bone with most pores filled with new bone. The control scaffold showed new bone formation in the plane of the cortical bone but little new bone where the scaffold entered the marrow space. Sr Hardystonite showed the greatest resorbability with replacement of the ceramic material by bone. We have developed novel engineered scaffolds (Sr-Hardystonite) for bone tissue regeneration. The developed scaffolds resorbed faster than the clinically used micro- TCP with greater amount of bone formation replacing the resorbed scaffold


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 288 - 288
1 May 2009
Kalia Singhrao T Coathup M Gibson S Blunn G
Full Access

Introduction: Recent studies have shown that MSCs can be isolated from the peripheral blood of many different species. Hematopoietic stem cell (HSC) mobilization from the bone marrow to the circulating bloodstream can be induced using granulocyte colony stimulating factors (G-CSF). As it has been shown that HSCs and MSCs have positive interactions with each other, it may be possible that G-CSF also promotes the release of circulating peripheral blood MSCs (PBMSCs). The hypothesis of this study was that G-CSF would increase the mobilization of peripheral blood-derived stromal-like cells. Materials and Methods: Six sheep with normal hematological profiles were given 5& #956;g/kg Neupogen& #63721; (filgrastim, G-CSF) subcutaneously for five days. Pre- and post-G-CSF treatment, blood was taken 4, 12, 24, and 2 weeks post-treatment. PBMSCs were isolated from the blood and cells plated at a cell density of 4.0 x 10e4 nucleated cells/cm2. Fibroblastic colony forming units (CFU-F) were counted 7 and 14 days after initial culture. The cells were tested for their multipotency by treating them with osteogenic, adipogenic, and chondrogenic supplements, and staining with the Von Kossa, Oil Red ‘O,’ and Alcian Blue stains, respectively, to show differentiation down the different lineages. Results: No CFU-F formation was observed in all blood samples taken before G-CSF therapy (0 CFU-F) after 7 and 14 days in culture. After G-CSF treatment, CFU-Fs were observed in blood samples taken 4, 12, and 336 hours (2 weeks) post-G-CSF. The CFU-F count was highest after 14 days in culture in the blood samples obtained 2 weeks post-G-CSF administration (1.027 ± 30.1353 CFU-F/cm2), compared to the lowest count, which was at 12 hours post-G-CSF treatment (0.064 ± 0.064 CFU-F/cm2). Hematology showed an increase in white blood cell (WBC), neutrophil, and eosinophil counts 24 hours after G-CSF administration. Two weeks post-G-CSF treatment, WBC, neutrophil, lymphocyte, and monocyte counts dropped back to normal range values. The highest number of CFU-F/cm2 were observed at this time. When WBC numbers were correlated with CFU-F counts using Pearson’s correlation co-efficient, the result was 0.523, a significant value (p=0.023) indicating that 27.4% of the WBC counts were related to CFU-F counts and vice versa. When time was accounted for as a third variable using the test for partial correlation coefficients, the co-efficient was found to be −0.0063, and was not significant (p=0.492). Expanded cells were fibroblastic in morphology, and upon differentiation were positive for the Von Kossa, Oil Red ‘O,’ and Alican Blue stains, indicating differentiation down the osteogenic, adipogenic, and chondrogenic lineages, respectively. Discussion and Conclusions: We have shown that PBMSCs can be isolated after G-CSF administration in sheep, and that the numbers of CFU-F increase after WBC levels have returned to normal. A previous in vitro study proposed that the increased BMSC growth observed when co-cultured with CD45+ HSCs was due to positive interactions between HSCs and MSCs, indicating a possible steady-state balance. PBMSCs may have important future applications in bone tissue regeneration


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 346 - 346
1 May 2009
Ramaswamy Y Wu C Zreiqat H
Full Access

Currently available calcium silicate based ceramics pseudowollostonite (CaSiO3) ceramics are regarded as a potential bioactive material for bone tissue regeneration due to their osseointegration properties. A drawback of CaSiO3 ceramics is that they possess high dissolution rate, leading to a high pH value in the surrounding environment thereby affecting the biological activity of bone cells. We hypothesize that chemical modification of CaSiO3 ceramics will improve their physical and biological properties. The coordinated activities of osteoblasts (OB) and osteoclasts (OC) are critical for proper bone remodelling. Moreover, growing evidence indicate that vascular endothelial cells are involved in bone development and remodelling. Present study aims at Chemically modifying CaSiO3 by incorporating zinc (Zn) and titanium (Ti) into their structure to develop novel materials Hardystonite (HT, Ca2ZnSi2O7) and Sphene (CaTiSiO5), respectively and to determine their effect on bone cells OB & OC and on endothelial cells. It is well known that cell behaviour in a culture system is influenced by the physiochemical characteristics of the substrate. Human bone derived cells (HBDC) cultured on HT and Sphene supported the HBDC attachment (cells exhibited well defined cytoskeletal structure) showed characteristic features of cellular proliferation and differentiation. In addition, Zn and Ti incorporation into CaSiO3 supported the formation of mature, active and functional OC. Moreover, the modified bio-materials were found to be conducive to Human micro-vascular dermal endothelial cell growth. Our results suggest that HT and Sphene possessed an improved physical characteristics and enhanced biological activities of bone cells (OB & OC) and endothelial cells thus rendering it a potential material for bone tissue regeneration and coatings onto commonly used orthopaedic and dental implants


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 896 - 902
1 Jul 2005
Hernigou P Poignard A Manicom O Mathieu G Rouard H