Advertisement for orthosearch.org.uk
Results 1 - 20 of 262
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 790 - 792
17 Dec 2024
Mangwani J Brockett C Pegg E

Cite this article: Bone Joint Res 2024;13(12):790–792.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment.

Cite this article: Bone Joint Res 2024;13(12):725–740.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 126 - 126
14 Nov 2024
Lu C Lian W Wu R Lin Y Su C Chen C Tai M Chen Y Wang S Wang F
Full Access

Introduction. Cartilage damage is a critical aspect of osteoarthritis progression, but effective imaging strategies remain limited. Consequently, multimodal imaging approaches are receiving increased attention. Gold nanomaterials, renowned for their therapeutic and imaging capabilities, hold promise in drug development. However, their potential for cartilage imaging is rarely discussed. Here, we developed a versatile nanomaterial, AuNC@BSA-Gd-I, for cartilage detection. By leveraging electrostatic interactions with sulfated glycosaminoglycans (sGAG), the AuNC@BSA-Gd-I can effectively penetrate damaged cartilage while accumulating minimally in healthy cartilage. This probe can be visualized or detected using CT, MRI, IVIS, and a gamma counter, providing a comprehensive approach to cartilage imaging. Additionally, we compared the imaging abilities, cartilage visualization capacities, and versatility of currently disclosed multimodal gold nanomaterials with those of AuNC@BSA-Gd-I. Method. The physicochemical properties of nanomaterials were measured. The potential for cartilage visualization of these nanomaterials was assessed using an in vitro porcine model. The sGAG content in cartilage was determined using the dimethylmethylene blue (DMMB) assay to establish the correlation between sGAG concentration and imaging intensity acquired at each modality. Results. The cartilage imaging abilities of AuNC@BSA-Gd-I for CT, MRI, and optical imaging were verified, with each imaging intensity demonstrating a strong correlation with the sGAG content (MRI; R2=0.93, CT; R2=0.83, IVIS; R2=0.79). Furthermore, AuNC@BSA-Gd-. 131. I effectively accumulated in defective cartilage tissue compared to healthy cartilage (23755.38 ± 5993.61 CPM/mg vs. 11699.97 ± 794.93 CPM/mg). Additionally, current gold nanomaterials excelled in individual imaging modalities but lacked effective multimodal imaging ability. Conclusion. Compared to current multimodal gold nanomaterials, AuNC@BSA-Gd-I demonstrates the potential to image cartilage across multiple medical instruments, providing investigators with a more powerful, visible, and convenient approach to detect cartilage defects. Acknowledgements. This work was financially supported by the National Health Research Institute, Taiwan (NHRI-EX112-11029SI), the National Science and Technology Council (NSTC 112-2314-B-182A-105-MY3), and Chang Gung Memorial Hospital, Taiwan (CMRPG8N0781 and CMRPG8M1281-3)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 14 - 14
14 Nov 2024
Gögele CL Fleischmann N Müller S Liesenberg T Pizzadili G Wiltzsch S Gerdes T Schaefer-Eckart K Lenhart A Schulze-Tanzil G
Full Access

Introduction. Articular cartilage has a low self-regeneration capacity. Cartilage defects have to be treated to minimize the risk of the onset of osteoarthritis. Bioactive glass (BG) is a promising source for cartilage tissue engineering. Until now, conventional BGs (like BG1393) have been used, mostly for bone regeneration, as they are able to form a hydroxyapatite layer and are therefore, less suited for cartilage reconstruction. The aim of this study is to study the effect of 3D printed hydrogel scaffolds supplemented with spheres of the BG CAR12N to improve the chondrogenesis of mesenchymal stem cells (MSCs). Method. Based on our new glass composition (CAR12N), small BG spheres (25-40 µm) were produced and mixed with hydrogel and primary human (h) MSCs. Grid printed scaffolds were cultivated up to 21 days in expansion or chondrogenic differentiation medium. Macroscopical images of the scaffolds were taken to observe surface changes. Vitality, DNA and sulfated glycosaminoglycan (GAG) content was semiquantitatively measured as well as extracellular matrix gene transcription. Result. It was possible to print grid shaped hydrogel scaffolds with BG spheres and hMSCs. No significant changes in scaffold shape, surface or pore size were detected after 21 days in culture. The BG spheres were homogeneously distributed inside the grids. Vitality was significantly higher in grids with CAR12N spheres in comparison to those without. The DNA content remained constant over three weeks, but was higher in the sphere containing scaffolds than in those without BG spheres. GAG content in the grids increased not only with additional cultivation time but especially in grids with BG spheres in chondrogenic medium. Aggrecan and type II collagen gene expression was significantly higher grids cultured in the chondrogenic differentiation medium. Conclusion. This developed 3D model, is very interesting to study the effect of BG on hMSCs and to understand the influence of leaking ions on chondrogenesis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 109 - 109
14 Nov 2024
Weiden GVD Egmond NV Karperien M Both S Mastbergen S Emans P Caron J Custers R
Full Access

Introduction. The ACTIVE(Advanced Cartilage Treatment with Injectable-hydrogel Validation of the Effect) study investigates safety and performance of a novel dextran-tyramine hydrogel implant for treatment of small cartilage defects in the knee (0.5-2.0cm2). The hydrogel is composed of a mixture of natural polymer conjugates that are mixed intra-operatively and which cross-link in situ through a mild enzymatic reaction, providing a cell-free scaffold for cartilage repair. Method. The ACTIVE study is split into a safety (n=10) and a performance cohort (n=36). The Knee Injury and Osteoarthritis Outcome Score (KOOS), pain (numeric rating scale, NRS), Short-Form Health Survey (SF-36) were compared at baseline and 3, 6, and 12 months after surgery. The primary performance hypothesis is an average change in the KOOS from baseline to 12 months (ΔKOOS) greater than a minimal clinically important change (MIC) of 10. No statistical tests were performed as these are preliminary data on a smaller portion of the total study. Result. All patients of the safety cohort (n=10, mean age±SD, 30±9 years) were treated with the hydrogel for a symptomatic (NRS≥4) cartilage defect on the femoral condyle or trochlear groove (mean size±SD, 1.2±0.4cm2). No signs of an adverse foreign tissue reaction or serious adverse events were recorded within the safety cohort. At final follow-up mean KOOS±SD was 66.9±23.5, mean NRS resting±SD was 1.3±1.9, NRS activity±SD was 3.8±2.9 and mean SF-36±SD was 72.0±10.9. ΔKOOS was 21. One patient sustained new knee trauma prior to final follow-up, affecting final scores considerably. When excluded, ΔKOOS was 24(n=9). Conclusion. These promising initial findings provide a solid basis for continuation and expansion of this unique cartilage treatment. The MIC of 10 was surpassed. Though, results should be interpreted cautiously as they are based solely on preliminary data of the first 10 patients. Acknowledgements. Study is sponsored by Hy2Care, producer of the CartRevive®(dextran-tyramine) Hydrogel implant


Bone & Joint Research
Vol. 13, Issue 7 | Pages 342 - 352
9 Jul 2024
Cheng J Jhan S Chen P Hsu S Wang C Moya D Wu Y Huang C Chou W Wu K

Aims

To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration.

Methods

The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm2, 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens.


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 32 - 39
1 May 2024
Briem T Stephan A Stadelmann VA Fischer MA Pfirrmann CWA Rüdiger HA Leunig M

Aims

The purpose of this study was to evaluate the mid-term outcomes of autologous matrix-induced chondrogenesis (AMIC) for the treatment of larger cartilage lesions and deformity correction in hips suffering from symptomatic femoroacetabular impingement (FAI).

Methods

This single-centre study focused on a cohort of 24 patients with cam- or pincer-type FAI, full-thickness femoral or acetabular chondral lesions, or osteochondral lesions ≥ 2 cm2, who underwent surgical hip dislocation for FAI correction in combination with AMIC between March 2009 and February 2016. Baseline data were retrospectively obtained from patient files. Mid-term outcomes were prospectively collected at a follow-up in 2020: cartilage repair tissue quality was evaluated by MRI using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. Patient-reported outcome measures (PROMs) included the Oxford Hip Score (OHS) and Core Outcome Measure Index (COMI). Clinical examination included range of motion, impingement tests, and pain.


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 232 - 239
1 Mar 2024
Osmani HT Nicolaou N Anand S Gower J Metcalfe A McDonnell S

Aims

To identify unanswered questions about the prevention, diagnosis, treatment, and rehabilitation and delivery of care of first-time soft-tissue knee injuries (ligament injuries, patella dislocations, meniscal injuries, and articular cartilage) in children (aged 12 years and older) and adults.

Methods

The James Lind Alliance (JLA) methodology for Priority Setting Partnerships was followed. An initial survey invited patients and healthcare professionals from the UK to submit any uncertainties regarding soft-tissue knee injury prevention, diagnosis, treatment, and rehabilitation and delivery of care. Over 1,000 questions were received. From these, 74 questions (identifying common concerns) were formulated and checked against the best available evidence. An interim survey was then conducted and 27 questions were taken forward to the final workshop, held in January 2023, where they were discussed, ranked, and scored in multiple rounds of prioritization. This was conducted by healthcare professionals, patients, and carers.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 123 - 123
2 Jan 2024
Gögele C Müller S Wiltzsch S Lenhart A Schäfer-Eckart K Schulze-Tanzil G
Full Access

The regenerative capacity of hyaline cartilage is greatly limited. To prevent the onset of osteoarthritis, cartilage defects have to be properly treated. Cartilage, tissue engineered by mean of bioactive glass (BG) scaffolds presents a promising approach. Until now, conventional BGs have been used mostly for bone regeneration, as they are able to form a hydroxyapatite (HA) layer and are therefore, less suited for cartilage reconstruction. The aim of this study is to compare two BGs based on a novel BG composition tailored specifically for cartilage (CAR12N) and patented by us with conventional BG (BG1393) with a similar topology. The highly porous scaffolds consisting of 100% BG (CAR12N, CAR12N with low Ca2+/Mg2+ and BG1393) were characterized and dynamically seeded with primary porcine articular chondrocytes (pACs) or primary human mesenchymal stem cells (hMSCs) for up to 21 days. Subsequently, cell viability, DNA and glycosaminoglycan contents, cartilage-specific gene and protein expression were evaluated. The manufacturing process led to a comparable high (over 80%) porosity in all scaffold variants. Ion release and pH profiles confirmed bioactivity for them. After both, 7 and 21 days, more than 60% of the total surfaces of all three glass scaffold variants was densely colonized by cells with a vitality rate of more than 80%. The GAG content was significantly higher in BG1393 colonized with pACs. In general, the GAG content was higher in pAC colonized scaffolds in comparison to those seeded with hMSCs. The gene expression of cartilage-specific collagen type II, aggrecan, SOX9 and FOXO1 could be detected in all scaffold variants, irrespectively whether seeded with pACs or hMSCs. Cartilage-specific ECM components could also be detected at the protein level. In conclusion, all three BGs allow the maintenance of the chondrogenic phenotype or chondrogenic differentiation of hMSCs and thus, they present a high potential for cartilage regeneration


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 96 - 96
2 Jan 2024
Bauer C Moser L Otahal A Kern D Dammerer D Zantop T Nehrer S
Full Access

Mincing cartilage with commercially available shavers is increasingly used for treating focal cartilage defects. This study aimed to compare the impact of mincing bovine articular cartilage using different shaver blades on chondrocyte viability. Bovine articular cartilage was harvested using a scalpel or three different shaver blades (2.5 mm, 3.5 mm, or 4.2 mm) from a commercially available shaver. The cartilage obtained with a scalpel was minced into fragments smaller than 1 mm. 3. All four conditions were cultivated in a culture medium for seven days. After Day 1 and Day 7, metabolic activity, RNA isolation, and gene expression of anabolic (COL2A1, ACAN) and catabolic genes (MMP1, MMP13), Live/Dead staining and visualization using confocal microscopy, and flow cytometric characterization of minced cartilage chondrocytes were measured. The study found that mincing cartilage with shavers significantly reduced metabolic activity after one and seven days compared to scalpel mincing (p<0.001). Gene expression of anabolic genes was reduced, while catabolic genes were increased after day 7 in all shaver conditions. The MMP13/COL2A1 ratio was also increased in all shaver conditions. Confocal microscopy revealed a thin line of dead cells at the lesion site with viable cells below for the scalpel mincing and a higher number of dead cells diffusely distributed in the shaver conditions. After seven days, there was a significant decrease in viable cells in the shaver conditions compared to scalpel mincing (p<0.05). Flow cytometric characterization revealed fewer intact cells and proportionally more dead cells in all shaver conditions compared to the scalpel mincing. Mincing bovine articular cartilage with commercially available shavers reduces the viability of chondrocytes compared to scalpel mincing. This indicates that mincing cartilage with a shaver should be considered a matrix rather than a cell therapy. Further experimental and clinical studies are required to standardize the mincing process with a shaver. Acknowledgements: This study received unrestricted funding from KARL STORZ SE & Co. KG


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 35 - 35
17 Nov 2023
Timme B Biant L McNicholas M Tawy G
Full Access

Abstract. Objectives. Little is known about the impact of cartilage defects on knee joint biomechanics. This investigation aimed to determine the gait characteristics of patients with symptomatic articular cartilage lesions of the knee. Methods. Gait analyses were performed at the Regional North-West Joint Preservation Centre. Anthropometric measurements were obtained, then 16 retroreflective markers representing the Plug-in-Gait biomechanical model were placed on pre-defined anatomical landmarks. Participants walked for two minutes at a self-selected speed on a treadmill on a level surface, then for 2 minutes downhill. A 15-camera motion-capture system recorded the data. Knee kinematics were exported into Matlab to calculate the average kinematics and spatiotemporal parameters per patient across 20 gait cycles. Depending on the normality of the data, paired t-tests or Wilcoxon ranked tests were performed to compare both knees (α = 0.05). Results. 20 patients participated; one of whom has bilateral cartilage defects. All 20 data sets were analysed for level walking; 18 were analysed for downhill walking. On a level surface, patients walked at an average speed of 3.1±0.8km/h with a cadence of 65.5±15.3 steps/minute. Patients also exhibited equal step lengths (0.470±0.072m vs 0.471±0.070m: p=0.806). Downhill, the average walking speed was 2.85±0.5km/h with a cadence of 78.8±23.1 steps/minute and step lengths were comparable (0.416±0.09m vs 0.420±0.079m: p=0.498). During level walking, maximum flexion achieved during swing did not differ between knees (54.3±8.6° vs 55.5±11.0°:p=0.549). Neither did maximal extension achieved at heel strike (3.1±5.7° vs 5.4±4.7°:p=0.135). On average, both knees remained in adduction throughout the gait cycle, with the degree of adduction greater in flexion in the operative knee. However, differences in maximal adduction were not significant (22.4±12.4° vs 18.7±11.0°:p=0.307). Maximal internal-external rotation patterns were comparable in stance (0.9±7.7° vs 3.5±9.8°: p=0.322) and swing (7.7±10.9° vs 9.8±8.3°:p=0.384). During downhill walking, maximum flexion also did not differ between operative and contralateral knees (55.38±10.6° vs 55.12±11.5°:p=0.862), nor did maximum extension at heel strike (1.32±6.5° vs 2.73±4.5°:p=0.292). No significant difference was found between maximum adduction of both knees (15.87±11.0° vs 16.78±12.0°:p=0.767). In stance, differences in maximum internal-external rotation between knees were not significant (5.39±10.7° vs 6.10±11.8°:p=0.836), nor were they significant in swing (7.69±13.3° vs 7.54±8.81°:p=0.963). Conclusions. Knee kinematics during level and downhill walking were symmetrical in patients with a cartilage defect of the knee, but an increased adduction during flexion in the operative knee may lead to pathological loading across the medial compartment of the knee during high flexion activities. Future work will investigate this further and compare the data to a healthy young population. We will also objectively assess the functional outcome of this joint preservation surgery to monitor its success. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 62 - 62
17 Nov 2023
Lan T Wright K Makwana N Bing A McCarthy H Hulme C
Full Access

Abstract. Objectives. Bone marrow aspirate concentrate (BMAC), together with fibrin glue (Tisseel, Baxter, UK) and Hyaluronic acid (HA) were used as a one-step cell therapy treating patients with ankle cartilage defects in our hospital. This therapy was proven to be safe, with patients demonstrating a significant improvement 12 months post-treatment. Enriched mesenchymal stem cells (MSCs) in BMAC are suggested inducers of cartilage regeneration, however, currently there is no point-of-care assessment for BMAC quality; especially regarding the proportion of MSCs within. This study aims to characterise the cellular component of CCR-generated BMAC using a point-of-care device, and to investigate if the total nucleated cell (TNC) count and patient age are predictive of MSC concentration. Methods. During surgery, 35ml of bone marrow aspirate (BMA) was collected from each patients’ iliac crest under anaesthesia, and BMAC was obtained via a commercial kit (Cartilage Regeneration kit, CCR, Innotec. ®. , UK). BMAC was then mixed with thrombin (B+T) for injection with HA and fibrinogen. In our study, donor-matched BMA, BMAC and B+T were obtained from consented patients (n=12, age 41 ± 16years) undergoing surgery with BMAC therapy. TNC, red blood cell (RBC) and platelet (PLT) counts were measured via a haematology analyser (ABX Micros ES 60, Horiba, UK), and the proportion of MSCs in BMA, BMAC and B+T were assessed via colony forming unit-fibroblast (CFU-F) assays. Significant differences data in matched donors were tested using Friedman test. All data were shown as mean ± SD. Results. Mean TNC counts in BMA and BMAC were not significantly different (14.0 ± 4.4 million/ml and 19.4 ± 32.9 million/ml, respectively, P>0.9999). However, TNC counts were significantly lower in B+T compared to BMAC (9.7 ± 24.5 million/ml and 19.4 ± 32.9 million/ml, respectively, P=0.0167). Similarly, PLT counts were decreased in B+T compared to BMAC (40.7 ± 30.7 million/ml and 417.5 ± 365.5 million/ml, respectively, P<0.0001), however, PLTs were significantly concentrated in BMAC compared to BMA (417.5 ± 365.5 million/ml and 114.8 ± 61.6 million/ml, respectively, P=0.0429). RBC counts were significantly decreased in BMAC and B+T compared to BMA (P=0.0322 and P<0.0001, respectively). Higher concentration of MSCs were observed in BMAC compared to BMA (0.006% ± 0.01% and 0.00007% ± 0.0001%, respectively, P=0.0176). Similar to TNCs and PLTs, the proportion of MSCs significantly decreased in B+T compared to BMAC (0.0004% ± 0.001% and 0.006% ± 0.01%, respectively, P=0.0023). Furthermore, patient age and TNC counts did not correlate with MSC concentration (Spearman's Rank test, P=0.3266 and P=0.4880, respectively). Conclusions. BMAC successfully concentrated PLTs, but BMAC preparations were highly variable. Mixing BMAC and thrombin however, as described in the CCR protocol, resulted in a dramatic reduction in TNCs, PLTs and MSCs. TNC counts and patient age could not be used to predict the MSC proportion in the BMAC based on current data. Future work aims to look at the biomolecule profile of BMAC plasma, and to correlate them to patient clinical outcomes. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Bone & Joint Research
Vol. 12, Issue 10 | Pages 615 - 623
3 Oct 2023
Helwa-Shalom O Saba F Spitzer E Hanhan S Goren K Markowitz SI Shilo D Khaimov N Gellman YN Deutsch D Blumenfeld A Nevo H Haze A

Aims

Cartilage injuries rarely heal spontaneously and often require surgical intervention, leading to the formation of biomechanically inferior fibrous tissue. This study aimed to evaluate the possible effect of amelogenin on the healing process of a large osteochondral injury (OCI) in a rat model.

Methods

A reproducible large OCI was created in the right leg femoral trochlea of 93 rats. The OCIs were treated with 0.1, 0.5, 1.0, 2.5, or 5.0 μg/μl recombinant human amelogenin protein (rHAM+) dissolved in propylene glycol alginate (PGA) carrier, or with PGA carrier alone. The degree of healing was evaluated 12 weeks after treatment by morphometric analysis and histological evaluation. Cell recruitment to the site of injury as well as the origin of the migrating cells were assessed four days after treatment with 0.5 μg/μl rHAM+ using immunohistochemistry and immunofluorescence.


Bone & Joint 360
Vol. 12, Issue 5 | Pages 21 - 23
1 Oct 2023

The October 2023 Sports Roundup360 looks at: Extensor mechanism disruption in the treatment of dislocated and multiligament knee injuries; Treatment of knee osteoarthritis with injection of stem cells; Corticosteroid injection plus exercise or exercise alone as adjuvants for patients with plantar fasciitis?; Generalized joint hypermobility and a second ACL injury?; The VISA-A ((sedentary) questionnaire for Achilles tendinopathy?.


Aims

Arthroscopic microfracture is a conventional form of treatment for patients with osteochondritis of the talus, involving an area of < 1.5 cm2. However, some patients have persistent pain and limitation of movement in the early postoperative period. No studies have investigated the combined treatment of microfracture and shortwave treatment in these patients. The aim of this prospective single-centre, randomized, double-blind, placebo-controlled trial was to compare the outcome in patients treated with arthroscopic microfracture combined with radial extracorporeal shockwave therapy (rESWT) and arthroscopic microfracture alone, in patients with ostechondritis of the talus.

Methods

Patients were randomly enrolled into two groups. At three weeks postoperatively, the rESWT group was given shockwave treatment, once every other day, for five treatments. In the control group the head of the device which delivered the treatment had no energy output. The two groups were evaluated before surgery and at six weeks and three, six and 12 months postoperatively. The primary outcome measure was the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale. Secondary outcome measures included a visual analogue scale (VAS) score for pain and the area of bone marrow oedema of the talus as identified on sagittal fat suppression sequence MRI scans.


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 953 - 960
1 Sep 2023
Cance N Erard J Shatrov J Fournier G Gunst S Martin GL Lustig S Servien E

Aims

The aim of this study was to evaluate the association between chondral injury and interval from anterior cruciate ligament (ACL) tear to surgical reconstruction (ACLr).

Methods

Between January 2012 and January 2022, 1,840 consecutive ACLrs were performed and included in a single-centre retrospective cohort. Exclusion criteria were partial tears, multiligament knee injuries, prior ipsilateral knee surgery, concomitant unicompartmental knee arthroplasty or high tibial osteotomy, ACL agenesis, and unknown date of tear. A total of 1,317 patients were included in the final analysis, with a median age of 29 years (interquartile range (IQR) 23 to 38). The median preoperative Tegner Activity Score (TAS) was 6 (IQR 6 to 7). Patients were categorized into four groups according to the delay to ACLr: < three months (427; 32%), three to six months (388; 29%), > six to 12 months (248; 19%), and > 12 months (254; 19%). Chondral injury was assessed during arthroscopy using the International Cartilage Regeneration and Joint Preservation Society classification, and its association with delay to ACLr was analyzed using multivariable analysis.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 497 - 503
16 Aug 2023
Lee J Koh Y Kim PS Park J Kang K

Aims

Focal knee arthroplasty is an attractive alternative to knee arthroplasty for young patients because it allows preservation of a large amount of bone for potential revisions. However, the mechanical behaviour of cartilage has not yet been investigated because it is challenging to evaluate in vivo contact areas, pressure, and deformations from metal implants. Therefore, this study aimed to determine the contact pressure in the tibiofemoral joint with a focal knee arthroplasty using a finite element model.

Methods

The mechanical behaviour of the cartilage surrounding a metal implant was evaluated using finite element analysis. We modelled focal knee arthroplasty with placement flush, 0.5 mm deep, or protruding 0.5 mm with regard to the level of the surrounding cartilage. We compared contact stress and pressure for bone, implant, and cartilage under static loading conditions.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 75 - 75
7 Aug 2023
Mackay N Bausch N McGoldrick N Krishnan H Shah F Smith N Thompson P Metcalfe A Spalding T
Full Access

Abstract. Background. Osteochondral allograft (OCA) transplantation is a clinically and cost-effective option for symptomatic cartilage defects. In 2017 we initiated a program for OCA transplantation for complex chondral and osteochondral defects as a UK tertiary referral centre. Aim. To characterise the complications, re-operation rate, graft survivorship and clinical outcomes of knee OCA transplantation. Methodology. Analysis of a prospectively maintained database of patients treated with primary OCA transplantation from 2017 to 2021 with a minimum of one-year follow-up. Patient reported outcome measures (PROMs), complications, re-operations and failures were evaluated. Results. 37 patients with 37 knee OCA procedures were included (mean age 31.6 years [16–49 years]). Mean BMI 26.6 kg/m2 (19.1–35.9 kg/m2). The mean chondral defect size was 3cm2 (1.2–7.3 cm2). Mean duration of follow-up was 3.1 years (1–5.3 years). 16 patients underwent meniscal allograft transplantation (MAT), 6 underwent osteotomy and 4 underwent ligament reconstruction as concurrent procedures. Significant improvements in mean PROMs were noted at 12 months. 16 patients had reoperations of which 5 had more than one surgery. Of these patients 6 were related to OCA (mainly debridement and revision OCA in one patient), and the remainder were related to additional procedures including removal of plate in 2 patients. The overall failure rate was 1 in 37 patients (3%). Conclusions. Early experience of OCA as a treatment option for complex chondral and osteochondral lesions in the knee shows satisfactory results. The reoperation rate is high but at mean follow-up of 3.1 years the survival rate was 97%


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims

Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury.

Methods

A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.


Bone & Joint Open
Vol. 4, Issue 7 | Pages 523 - 531
11 Jul 2023
Passaplan C Hanauer M Gautier L Stetzelberger VM Schwab JM Tannast M Gautier E

Aims

Hyaline cartilage has a low capacity for regeneration. Untreated osteochondral lesions of the femoral head can lead to progressive and symptomatic osteoarthritis of the hip. The purpose of this study is to analyze the clinical and radiological long-term outcome of patients treated with osteochondral autograft transfer. To our knowledge, this study represents a series of osteochondral autograft transfer of the hip with the longest follow-up.

Methods

We retrospectively evaluated 11 hips in 11 patients who underwent osteochondral autograft transfer in our institution between 1996 and 2012. The mean age at the time of surgery was 28.6 years (8 to 45). Outcome measurement included standardized scores and conventional radiographs. Kaplan-Meier survival curve was used to determine the failure of the procedures, with conversion to total hip arthroplasty (THA) defined as the endpoint.