Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application. In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.Aims
Methods
Aims. This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone metabolism in middle-aged and older adults. Methods. The databases of PubMed, Web of Science, and Cochrane Library were thoroughly searched from inception to July 2023. Results. The results revealed that vitamin K supplementation increased BMD at the lumbar spine (p = 0.035). Moreover, the pooled effects demonstrated a notable increase in carboxylated osteocalcin (cOC) (p = 0.004), a decrease in uncarboxylated osteocalcin (ucOC) (p < 0.001), and no significant effect on total osteocalcin (tOC) (p = 0.076). Accordingly, the ratio of cOC to ucOC (p = 0.002) significantly increased, while the ratio of ucOC to tOC decreased (p = 0.043). However, there was no significant effect of vitamin K supplementation on other bone metabolism markers, such as cross-linked telopeptide of type 1
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment. Cite this article:
Aims. Extracellular matrix (ECM) is a critical determinant of tissue mechanobiology, yet remains poorly characterized in joint tissues beyond cartilage in osteoarthritis (OA). This review aimed to define the composition and architecture of non-cartilage soft joint tissue structural ECM in human OA, and to compare the changes observed in humans with those seen in animal models of the disease. Methods. A systematic search strategy, devised using relevant matrix, tissue, and disease nomenclature, was run through the MEDLINE, Embase, and Scopus databases. Demographic, clinical, and biological data were extracted from eligible studies. Bias analysis was performed. Results. A total of 161 studies were included, which covered capsule, ligaments, meniscus, skeletal muscle, synovium, and tendon in both humans and animals, and fat pad and intervertebral disc in humans only. These studies covered a wide variety of ECM features, including individual ECM components (i.e.
The December 2024 Trauma Roundup360 looks at: Percutaneous lumbopelvic fixation is effective in the management of unstable transverse sacral fractures; A systematic review on autologous matrix-induced chondrogenesis (AMIC) for chondral knee defects; Stable clinical and radiological outcomes at medium and over five-year follow-up of calcaneus fracture open reduction internal fixation using a sinus tarsi approach; Right or left? It might make a difference; Suprapatellar versus infrapatellar tibial nailing – is there a difference in anterior knee pain and function?; Can patients safely weightbear following ankle fracture fixation?; Anterior-to-posterior or a plate fixation for posterior malleous fractures?; Audio distraction for traction pin insertion: a prospective randomized controlled study; Is intramedullary nailing of femoral diaphyseal fractures in the lateral decubitus position as safe and effective as on a traction table?
Aim. Periprosthetic joint infections follow 1-3% of arthroplasty surgeries, with the biofilm nature of these infections presenting a significant treatment challenge. 1. Prevention strategies include antibiotic-loaded bone cement; however, increases in cementless procedures means there is an urgent need for alternative local antimicrobial delivery methods. 2. A novel, ultrathin, silica-based sol-gel technology is evaluated in this research as an anti-infective coating for orthopaedic prosthetic devices, providing local antibiotic release following surgery. Method. Reduction in clinically relevant microbial activity and biofilm reduction by antimicrobial sol-gel coatings, containing a selection of antibiotics, were assessed via disc diffusion and microdilution culture assays using the Calgary biofilm device. 3. Proliferation, morphology,
Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry.Aims
Methods
Introduction. Homogenous and consistent preparations of mesenchymal stem cells (MSCs) can be acquired by selecting them for integrin α10β1 (integrin a10-MSCs). Safety and efficacy of intra-articular injection of allogeneic integrin a10-MSCs were shown in two post-traumatic osteoarthritis horse studies. The current study investigated immunomodulatory capacities of human integrin a10-MSCs in vitro and their cell fait after intra-articular injection in rabbits. Method. The concentration of produced immunomodulatory factors was measured after licensing integrin a10-MSCs with pro-inflammatory cytokines. Suppression of T-cell proliferation was determined in co-cultures with carboxyfluorescein N-succinimidyl ester (CFSE) labelled human peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3/CD28 and measuring the CFSE intensity of CD4+ cells. Macrophage polarization was assessed in co-cultures with differentiated THP-1 cells stimulated with lipopolysaccharide and analysing the M2 macrophage cell surface markers CD163 and CD206. In vivo homing and regeneration were investigated by injecting superparamagnetic iron oxide nanoparticles conjugated with Rhodamine B-labeled human integrin a10-MSCs in rabbits with experimental osteochondral defects. MSC distribution in the joint was followed by MRI and fluorescence microscopy. Result. The production of the immunomodulatory factors indoleamine 2,3-dioxygenase and prostaglandin E2 was increased after inflammatory licensing integrin a10-MSCs. Co-cultures with integrin a10-MSCs suppressed T-cell proliferation and increased the frequency of M2 macrophages. In vivo injected integrin a10-MSCs homed to osteochondral defects and were detected in the repair tissue of the defects up to 10 days after injection, colocalized with aggrecan and type II
Introduction. Histology is still considered the gold standard method for the evaluation of soft tissues in the musculoskeletal field, thanks to the possibility of studying structures using different staining and high magnification microscopy. To overcome the intrinsic limits of this method, contrast enhanced microtomographic (CE- microCT) protocols are constantly evolving to allow 3D study of soft tissues. However, no standardized approaches are available, and many concerns exist about the alterations induced to the samples. Method. microCT/histology protocols were explored on human tendons and menisci. To enhance contrast tissues for microCT scanning 1) examethyldisilazane drying 2) 2% phosphotungstic acid (PTA) in alcoholic solution exposition and 3) 2% PTA in aqueous solution exposition were performed; to observe PTA contrast progression, three exposition and scanning times were selected. microCT images were compared to histological slices obtained from the same samples, after rehydration protocols, or from adjacent tissues portion, stained with Picrosirius red to highlight the peculiar collagenic structures. Result. Exposition times influence PTA diffusion and tissue contrast; its specificity for collagenic structure allow a clearer contrast of the tissues. Histological processing on the same samples is possible: PTA removal requires careful washing in basic solution to reduce the hardening of the sample, while drying can be reverted applying inverse protocol. Comparison with microCT images is really accurate if histology is performed on the same sample, although all protocols induce tissue shrinkage with relative packing of
Introduction. In tissue engineering, the establishment of sufficient vascularization is essential for tissue viability and functionality. Inadequate vascularization disrupts nutrients and oxygen supply. Nonetheless, regenerating intricate vascular networks represents a significant challenge. Consequently, research efforts devoted to preserving and regenerating functional vascular networks in engineered tissues are of paramount importance. The present work aims to validate a decellularisation process with preservation of the vascular network and extracellular matrix (ECM) components in fasciocutaneous flaps. Method. Five vascularized fasciocutaneous flaps from cadaveric donors were carefully harvested from the anterolateral thigh (ALT), preserving the main perforator of the fascia lata. The entire ALT flap underwent decellularization by perfusion using a clinically validated chemical protocol. Fluoroscopy and computed tomography (CT) were used to analyze the persistence of the vascular network within the flap, pre- and post-decellularization. Histological analysis, including hematoxylin and eosin staining, and quantitative DNA assessment evaluated decellularization efficacy. Further qualitative (immunohistochemistry, IHC) and quantitative analyses were conducted to assess the preservation of ECM components, such as
Introduction. PIEZO mechanoreceptors are increasingly recognized to play critical roles in fundamental physiological processes like proprioception, touch, or tendon biomechanics. However, their gating mechanisms and downstream signaling are still not completely understood, mainly due to the lack of effective tools to probe these processes. Here, we developed new tailor-made nanoswitches enabling wireless targeted actuation on PIEZO1 by combining molecular imprinting concepts with magnetic systems. Method. Two epitopes from functionally relevant domains of PIEZO1 were rationally selected in silico and used as templates for synthesizing molecularly imprinted nanoparticles (MINPs). Highly-responsive superparamagnetic zinc-doped iron oxide nanoparticles were incorporated into MINPs to grant them magnetic responsiveness. Endothelial cells (ECs) and adipose tissue-derived stem cells (ASCs) incubated with each type of MINP were cultured under or without the application of cyclical magnetomechanical stimulation. Downstream effects of PIEZO1 actuation on cell mechanotransduction signaling and stem cell fate were screened by analyzing gene expression profiles. Result. Nanoswitches showed sub-nanomolar affinity for their respective epitope, binding PIEZO1-expressing ECs similarly to antibodies. Expression of genes downstream of PIEZO1 activity significantly changed after magnetomechanical stimulation, demonstrating that nanoswitches can transduce this stimulus directly to PIEZO1 mechanoreceptors. Moreover, this wireless actuation system proved effective for modulating the expression of genes related to musculoskeletal differentiation pathways in ASCs, with RNA-sequencing showing pronounced shifts in extracellular matrix organization, signal transduction, or
Introduction. Chondrocytes are enveloped within the pericellular matrix (PCM), a structurally intricate network primarily demarcated by the presence of
Introduction. Diabetes mellitus type 2 (DMT2) patients often develop Achilles tendon (AS) degeneration. The ZDF rat model is often used to study DMT2. Hence, this study investigated whether tenocytes isolated from diabetic and non diabetic ZDF rats respond differentially to normo- (NG) and hyperglycemic (HG) conditions in the presence of tumor necrosis (TNF)α. Method. AS tenocytes isolated from adult diabetic (fa/fa) or lean (fa/+) Zucker Diabetic Fatty (ZDF) rats were treated with 10 ng/mL TNFα either under NG or HG conditions (1 g/L versus 4.5 g/L glucose). Tendons were characterized histopathologically using Movin score. Tenocyte survival, metabolic activity, gene and/or protein expression of the main tendon extracellular matrix (ECM) component
Introduction. Cartilage comprises chondrocytes and extracellular matrix. The matrix contains different
Introduction. Within articular cartilage, chondrocytes reside within the pericellular matrix (PCM), collectively constituting the microanatomical entity known as a chondron. The PCM functions as a pivotal protective shield and mediator of biomechanical and biochemical cues. In the context of Osteoarthritis (OA), enzymatic degradation of the PCM is facilitated by matrix metalloproteinases (MMPs). This study delves into the functional implications of PCM structural integrity decline on the biomechanical properties of chondrons and impact on Ca. 2+. signaling dynamics. Method. Chondrons isolated from human cartilage explants were incubated with activated MMP-2, -3, or -7. Structural degradation of the pericellular matrix (PCM) was assessed by immunolabelling (collagen type VI and perlecan, n=5). Biomechanical properties of chondrons (i.e. elastic modulus (EM)) were analyzed using atomic force microscopy (AFM). A fluorescent calcium indicator (Fluo-4-AM) was used to record and quantify the intracellular Ca. 2+. influx of chondrons subjected to single cell mechanical loading (500nN) with AFM (n=7). Result. Each of the three MMPs disrupted the structural integrity of the PCM, leading to attenuated fluorescence intensity for both perlecan and
Introduction. The Achilles tendon is the thickest and strongest tendon in the human body. Even though the tendon is so strong, it is one of the most frequently injured tendons. Treatment of patients after rupture is planned conservatively and surgically. Conservative treatment is generally applied to elderly patients with sedentary lives. If the treatment is surgical, it can be planned as open surgery or percutaneous surgery. In our study with rabbits, we wrapped a membrane made of plga (polylactic-co-glycolic acid) nanotubes impregnated with type 1
INTRODUCTION. Intervertebral disc (IVD) degeneration is not completely understood because of the lack of relevant models. In vivo models are inappropriate because animals are quadrupeds. IVD is composed of the Nucleus Pulposus (NP) and the Annulus Fibrosus (AF), an elastic tissue that surrounds NP. AF consists of concentric lamellae made of
Introduction. The healing of rotator cuff injuries poses significant challenges, primarily due to the complexity of recreating the native tendon-to-bone interface, characterized by highly organized structural and compositional gradients. Addressing this, our innovative approach leverages bioprinted living tissue constructs, incorporating layer-specific growth factors (GFs) to facilitate enthesis regeneration. This method aims to guide in situ zonal differentiation of stem cells, closely mirroring the natural enthesis tissue architecture. Method. Our strategy involves the utilization of advanced bioprinting technology to fabricate living tissue constructs. These constructs are meticulously designed with embedded microsphere-based delivery carriers, ensuring the sustained release of tenogenic, chondrogenic, and osteogenic growth factors. This layer-specific release mechanism is tailored to promote the precise differentiation of stem cells across different regions of the construct, aligning with the gradient nature of enthesis tissues. Result. In vitro studies demonstrated that our layer-specific tissue constructs significantly outperformed basal constructs without GFs, achieving region-specific differentiation of stem cells. More critically, in a rabbit model of rotator cuff tear, these bioprinted living tissue constructs expedited enthesis regeneration. Key outcomes included improved biomechanical properties, enhanced
Introduction. Immunomodulation represents a novel strategy to improve bone healing in combination with low doses of bone morphogenetic growth factors like BMP-2. This study aims to investigate the effect and timing of monoclonal anti-IL-1ß antibody administration with 1μg BMP-2 on bone healing over 14 weeks in a rat femur segmental defect model. Method. 2 mm femoral defects were created in 22-27 weeks-old female Fischer F344 rats, internally fixed with a plate (animal license: GR/19/2022) using established protocols for analgesia and anesthesia. Animals (n=4/group) received either a
Introduction. Bereft of their optimal tissue context, cells lose their phenotype, function and therapeutic potential during in vitro culture. Despite the fact that in vivo cells are exposed simultaneously to multiple signals, traditional ex vivo cultures are monofactorial. With these in mind, herein we assessed the combined effect of surface topography, substrate rigidity,