Spastic muscles of patients with cerebral palsy (CP) are considered structurally as shortened muscles, that produce high force in short muscle lengths. Yet, previous intraoperative studies in which muscles’ forces are measured directly as a function of joint angle showed consistently that spastic knee flexor muscles produce a low percentage of their maximum force in flexed knee positions. They also showed effects of epimuscular myofascial force transmission (EMFT): simultaneous activation of different muscles elevated target muscle's force. However, quantification of spastic muscle's force - muscle-tendon unit length (lMTU) data during gait is lacking. Combining intraoperative experiments with participants’ musculoskeletal models developed based on their gait analyses, we aimed to test the following hypotheses: activated spastic semitendinosus (ST) muscle (1) operates at short lMTU's during gait, forces are (2) low at short lMTU's and (3) increase by co-activating other muscles.Background
Aim