Advertisement for orthosearch.org.uk
Results 1 - 20 of 102
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 716 - 724
4 Dec 2024
Cao S Chen Y Zhu Y Jiang S Yu Y Wang X Wang C Ma X

Aims

This cross-sectional study aimed to investigate the in vivo ankle kinetic alterations in patients with concomitant chronic ankle instability (CAI) and osteochondral lesion of the talus (OLT), which may offer opportunities for clinician intervention in treatment and rehabilitation.

Methods

A total of 16 subjects with CAI (eight without OLT and eight with OLT) and eight healthy subjects underwent gait analysis in a stair descent setting. Inverse dynamic analysis was applied to ground reaction forces and marker trajectories using the AnyBody Modeling System. One-dimensional statistical parametric mapping was performed to compare ankle joint reaction force and joint moment curve among groups.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 52 - 52
14 Nov 2024
Lund M Shayestehpour H
Full Access

Introduction. This research aims to enhance the control of intricate musculoskeletal spine models, a critical tool for comprehending both healthy and pathological spinal conditions. State-of-the-art musculoskeletal spine models incorporate segments for all vertebra, each possessing 3 degrees-of-freedom (DOF). Manually defining the posture with this amount of DOFs presents a significant challenge. The prevalent method of equally distributing the spine's overall rotation among the vertebrae often proves to be an inadequate assumption, particularly when dealing with the entire spine. Method. We have engineered a comprehensive non-linear spine rhythm and the requisite tools for its implementation in widely utilized musculoskeletal modelling software (1). The rhythm controls lateral bending, axial rotation, and flexion/extension. The mathematical and implementation details of the rhythm are beyond this abstract, but it's noteworthy that the implementation accommodates non-linear rhythms. This means, for example, that one set of rhythm coefficients is used for flexion and another for extension. The rhythm coefficients, which distinguish the movement along the spine, were derived from a review of spine literature. The values for spine and vertebra range-of-motion (ROM) vary significantly in published studies, and no complete dataset was found in any single study. Consequently, the rhythm presented here is a composite, designed to provide the most consistent and average set of rhythm coefficients. Result. The novel spine rhythm simplifies the control of detailed spine models, accommodating varying amounts of input data. It allows for the specification of only the overall motion or the posture at a more detailed level (i.e., lumbar, thoracic, neck). The tools and rhythm coefficients are publicly available on GitHub. Conclusion. The innovative spine rhythm enhances the usability of cutting-edge spine models. For flexion/extension of the spine, it introduces a non-linear rhythm, exhibiting distinct behaviour between flexion and extension - a feature not previously observed in musculoskeletal spine models. 1) The AnyBody Modeling System


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 51 - 51
14 Nov 2024
Shayestehpour H Shayestehpour MA Wong C Bencke J Rasmussen J
Full Access

Introduction. Adolescent Idiopathic Scoliosis (AIS) is a three-dimensional deformity of the spine with unclear etiology. Due to the asymmetry of lateral curves, there are differences in the muscle activation between the convex and concave sides. This study utilized a comprehensive thoracic spine and ribcage musculoskeletal model to improve the biomechanical understanding of the development of AIS deformity and approach an explanation of the condition. Methods. In this study, we implemented a motion capture model using a generic rigid-body thoracic spine and ribcage model, which is kinematically determinate and controlled by spine posture obtained, for instance, from radiographs. This model is publicly accessible via a GitHub repository. We simulated gait and standing models of two AIS (averaging 15 years old, both with left lumbar curve and right thoracic curve averaging 25 degrees) and one control subject. The marker set included extra markers on the sternum and the thoracic and lumbar spine. The study was approved by the regional Research Ethics Committee (Journal number: H17034237). Results. We investigated the difference between the muscle activation on the right and left sides including erector spinae (ES), psoas major (PS), and multifidus (MF). Results of the AIS simulations indicated that, on average throughout the gait cycle, the right ES, left PS and left MF had 46%, 44%, and 23% higher activities compared to the other side, respectively. In standing, the ratios were 28%, 40%, and 19%, respectively. However, for the control subject, the differences were under 7%, except ES throughout the gait, which was 17%. Conclusion. The musculoskeletal model revealed distinct differences in force patterns of the right and left sides of the spine, indicating an instability phenomenon, where larger curves lead to higher muscle activations for stabilization. Acknowledgement. The project is funded by the European Union's Horizon 2020 program through Marie Skłodowska-Curie grant No. [764644]


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1273 - 1283
1 Nov 2024
Mahmud H Wang D Topan-Rat A Bull AMJ Heinrichs CH Reilly P Emery R Amis AA Hansen UN

Aims

The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids.

Methods

Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics. Results. There were evident biomechanical differences between the simulated patient models, but also trends that appeared reproducible at the population level. Optimizing the implant position significantly reduced the maximum observed strain root mean square deviations within the cohort from 36.5% to below 5.3% for all but the anterolateral ligament; and concomitantly reduced the kinematic deviations from 3.8 mm (SD 1.7) and 4.7° (SD 1.9°) with MA to 2.7 mm (SD 1.4) and 3.7° (SD 1.9°) relative to the pre-diseased state. To achieve this, the femoral component consistently required translational adjustments in the anterior, lateral, and proximal directions, while the tibial component required a more posterior slope and varus rotation in most cases. Conclusion. These findings confirm that MA-induced biomechanical alterations relative to the pre-diseased state can be reduced by optimizing the implant position, and may have implications to further advance pre-planning in robotic-assisted surgery in order to restore pre-diseased knee function. Cite this article: Bone Joint J 2024;106-B(11):1231–1239


Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims

This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy.

Methods

Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 65 - 65
17 Nov 2023
Khatib N Schmidtke L Lukens A Arichi T Nowlan N Kainz B
Full Access

Abstract. Objectives. Neonatal motor development transitions from initially spontaneous to later increasingly complex voluntary movements. A delay in transitioning may indicate cerebral palsy (CP). The general movement optimality score (GMOS) evaluates infant movement variety and is used to diagnose CP, but depends on specialized physiotherapists, is time-consuming, and is subject to inter-observer differences. We hypothesised that an objective means of quantifying movements in young infants using motion tracking data may provide a more consistent early diagnosis of CP and reduce the burden on healthcare systems. This study assessed lower limb kinematic and muscle force variances during neonatal infant kicking movements, and determined that movement variances were associated with GMOS scores, and therefore CP. Methods. Electromagnetic motion tracking data (Polhemus) was collected from neonatal infants performing kicking movements (min 50° knee extension-flexion, <2 seconds) in the supine position over 7 minutes. Tracking data from lower limb anatomical landmarks (midfoot inferior, lateral malleolus, lateral knee epicondyle, ASIS, sacrum) were applied to subject-scaled musculoskeletal models (Gait2354_simbody, OpenSim). Inverse kinematics and static optimisation were applied to estimate lower limb kinematics (knee flexion, hip flexion, hip adduction) and muscle forces (quadriceps femoris, biceps femoris) for isolated kicks. Functional principal component analysis (fPCA) was carried out to reduce kicking kinematic and muscle force waveforms to PC scores capturing ‘modes’ of variance. GMOS scores (lower scores = reduced variety of movement) were collected in parallel with motion capture by a trained operator and specialised physiotherapist. Pearson's correlations were performed to assess if the standard deviation (SD) of kinematic and muscle force waveform PC scores, representing the intra-subject variance of movement or muscle activation, were associated with the GMOS scores. Results. The study compared GMOS scores, kinematics, and muscle force variances from a total of 26 infants with a mean corrected gestational age of 39.7 (±3.34) weeks and GMOS scores between 21 and 40. There was a significant association between the SD of the PC scores for knee flexion and the GMOS scores (PC1: R = 0.59, p = 0.002; PC2: R = 0.49, p = 0.011; PC3: R = 0.56, p = 0.003). The three PCs captured variances of the overall flexion magnitude (66% variance explained), early-to-late kick knee extension (20%), and continual to biphasic kicking (6%). For hip flexion, only the SD of PC1 correlated with GMOS scores (PC1: R = 0.52, p = 0.0068), which captured the variance of the overall flexion magnitude (81%). For the biceps femoris, the SD of PC1 and PC3 associated with GMOS scores (PC1: R = 0.50, p = 0.002; PC3: R = 0.45, p = 0.03), which captured the variance of the overall bicep force magnitude (79%) and early-to-late kick bicep activation (8%). Conclusions. Infants with reduced motor development as scored in the GMOS displayed reduced variances of knee and hip flexion and biceps femoris activation across kicking cycles. These findings suggest that combining objectively measured movement variances with existing classification methods could facilitate the development of more consistent and accurate diagnostic tools for early detection of CP. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 52 - 52
17 Nov 2023
Jones R Bowd J Gilbert S Wilson C Whatling G Jonkers I Holt C Mason D
Full Access

Abstract. OBJECTIVE. Knee varus malalignment increases medial knee compartment loading and is associated with knee osteoarthritis (OA) progression and severity. 1. Altered biomechanical loading and dysregulation of joint tissue biology drive OA progression, but mechanistic links between these factors are lacking. Subchondral bone structural changes are biomechanically driven, involve bone resorption, immune cell influx, angiogenesis, and sensory nerve invasion, and contribute to joint destruction and pain. 2. We have investigated mechanisms underlying this involving RANKL and alkaline phosphatase (ALP), which reflect bone resorption and mineralisation respectively. 3. and the axonal guidance factor Sema3A. Sema3A is osteotropic, expressed by mechanically sensitive osteocytes, and an inhibitor of sensory nerve, blood vessel and immune cell invasion. 4. Sema3A is also differentially expressed in human OA bone. 5. HYPOTHESIS: Medial knee compartment overloading in varus knee malalignment patients causes dysregulation of bone derived Sema3A signalling directly linking joint biomechanics to pathology and pain. METHODS. Synovial fluid obtained from 30 subjects with medial knee OA (KL grade II-IV) undergoing high tibial osteotomy surgery (HTO) was analysed by mesoscale discovery and ELISA analysis for inflammatory, neural and bone turnover markers. 11 of these patients had been previously analysed in a published patient-specific musculoskeletal model. 6. of gait estimating joint contact location, pressure, forces, and medial-lateral condyle load distribution in a published data set included in analyses. Data analysis was performed using Pearson's correlation matrices and principal component analyses. Principal Components (PCs) with eigenvalues greater than 1 were analysed. RESULTS. PC1 (32.94% of variation) and PC2 (25.79% of variation) from PCA analysis and correlation matrices separated patients according to correlated clusters of established inflammatory markers of OA pain and progression (IL6/IL8, r=0.754, p<0.001) and anti-inflammatory mediators (IL4/IL10, r=0.469, p=0.005). Bone turnover marker ALP was positively associated with KL grade (r=0.815, p=0.002) and negatively associated with IL10 (r=−0.402, p=0.018) and first peak knee loading pressures (r=−0.688, p=0.019). RANKL was positively associated with IL4 (r=0.489, p=0.003). Synovial fluid Sema3A concentrations showed separate clustering from all OA progression markers and was inversely correlated with TNF-α (r=−0.423, p=0.022) in HTO patients. Sema3A was significantly inversely correlated with total predicted force in the medial joint compartment (r=−0.621, p=0.041), mean (r=−0.63, p=0.038) and maximum (r=−0.613, p=0.045) calculated medial compartment joint pressures during the first phase and mean (r=−0.618, p=0.043) and maximum (r=−0.641, p=0.034) medial compartment joint pressures during midstance outputs of patient-specific musculoskeletal model. CONCLUSIONS. This study shows joint inflammatory status and mechanical overloading influence subchondral bone-remodelling. Synovial Sema3A concentrations are inversely correlated to patient-specific musculoskeletal model estimations of pathological medial overloading. This study reveals Sema3A as a biological mediator with capacity to induce OA pain and disease progression that is directly regulated by gait mechanical loading. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 125 - 125
11 Apr 2023
Woodford S Robinson D Lee P Rohrle O Mehl A Ackland D
Full Access

Occlusal loading and muscle forces during mastication aids in assessment of dental restorations and implants and jaw implant design; however, three-dimensional bite forces cannot be measured with conventional transducers, which obstruct the native occlusion. The aim of this study was to combine accurate jaw kinematics measurements, together with subject-specific computational modelling, to estimate subject-specific occlusal loading and muscle forces during mastication. Motion experiments were performed on one male participant (age: 39yrs, weight: 82kg) with healthy dentition. Two low-profile magnetic sensors were fixed to the participant's teeth and the two dental arches digitised using an intra-oral scanner. The participant performed ten continuous of chewing on a polyurethane rubber sample of known material properties, followed by maximal compression (clenching). This was repeated at the molars, premolars of both the left and right sides, and central incisors. Jaw motion was simultaneously recorded from the sensors, and finite element modelling used to estimate bite force. Specifically, simulations of chewing and biting were performed by driving the model using the measured kinematics, and bite force magnitude and direction quantified. Muscle forces were then evaluated using a rigid-body musculoskeletal model of the patient's jaw. The first molars generated the largest bite forces during chewing (left: 309 N, right: 311 N) and maximum-force biting (left: 496 N, right: 495 N). The incisors generated the smallest bite forces during chewing (75 N) and maximum-force biting (114 N). The anterior temporalis and superficial masseter muscles had the largest contribution to maximum bite force, followed by the posterior temporalis and medial pterygoid muscles. This study presents a new method for estimating dynamic occlusal loading and muscle forces during mastication. These techniques provide new knowledge of jaw biomechanics, including muscle and occlusal loading, which will be useful in surgical planning and jaw implant design


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 123 - 123
11 Apr 2023
Ghaffari A Rahbek O Lauritsen R Kappel A Rasmussen J Kold S
Full Access

The tendency towards using inertial sensors for remote monitoring of the patients at home is increasing. One of the most important characteristics of the sensors is sampling rate. Higher sampling rate results in higher resolution of the sampled signal and lower amount of noise. However, higher sampling frequency comes with a cost. The main aim of our study was to determine the validity of measurements performed by low sampling frequency (12.5 Hz) accelerometers (SENS) in patients with knee osteoarthritis compared to standard sensor-based motion capture system (Xsens). We also determined the test-retest reliability of SENS accelerometers. Participants were patients with unilateral knee osteoarthritis. Gait analysis was performed simultaneously by using Xsens and SENS sensors during two repetitions of over-ground walking at a self-selected speed. Gait data from Xsens were used as an input for AnyBody musculoskeletal modeling software to measure the accelerations at the exact location of two defined virtual sensors in the model (VirtualSENS). After preprocessing, the signals from SENS and VirtualSENS were compared in different coordinate axes in time and frequency domains. ICC for SENS data from first and second trials were calculated to assess the repeatability of the measurements. We included 32 patients (18 females) with median age 70.1[48.1 – 85.4]. Mean height and weight of the patients were 173.2 ± 9.6 cm and 84.2 ± 14.7 kg respectively. The correlation between accelerations in time domain measured by SENS and VirtualSENS in different axes was r = 0.94 in y-axis (anteroposterior), r = 0.91 in x-axis (vertical), r = 0.83 in z-axis (mediolateral), and r = 0.89 for the magnitude vector. In frequency domain, the value and the power of fundamental frequencies (F. 0. ) of SENS and VirtualSENS signals demonstrated strong correlation (r = 0.98 and r = 0.99 respectively). The result of test-retest evaluation showed excellent repeatability for acceleration measurement by SENS sensors. ICC was between 0.89 to 0.94 for different coordinate axes. Low sampling frequency accelerometers can provide valid and reliable measurements especially for home monitoring of the patients, in which handling big data and sensors cost and battery lifetime are among important issues


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 8 - 8
11 Apr 2023
Piet J Vancleef S Mielke F Van Nuffel M Orozco G Korhonen R Lories R Aerts P Van Wassenbergh S Jonkers I
Full Access

Altered mechanical loading is a widely suggested, but poorly understood potential cause of cartilage degeneration in osteoarthritis. In rodents, osteoarthritis is induced following destabilization of the medial meniscus (DMM). This study estimates knee kinematics and contact forces in rats with DMM to gain better insight into the specific mechanisms underlying disease development in this widely-used model. Unilateral knee surgery was performed in adult male Sprague-Dawley rats (n=5 with DMM, n=5 with sham surgery). Radio-opaque beads were implanted on their femur and tibia. 8 weeks following knee surgery, rat gait was recorded using the 3D²YMOX setup (Sanctorum et al. 2019, simultaneous acquisition of biplanar XRay videos and ground reaction forces). 10 trials (1 per rat) were calibrated and processed in XMALab (Knörlein et al. 2016). Hindlimb bony landmarks were labeled on the XRay videos using transfer learning (Deeplabcut, Mathis et al. 2019; Laurence-Chasen et al. 2020). A generic OpenSim musculoskeletal model of the rat hindlimb (Johnson et al. 2008) was adapted to include a 3-degree-of-freedom knee. Inverse kinematics, inverse dynamics, static optimization of muscle forces, and joint reaction analysis were performed. In rats with DMM, knee adduction was lower compared to sham surgery. Ground reaction forces were less variable with DMM, resulting in less variability in joint external moments. The mediolateral ground reaction force was lower, resulting in lower hip adduction moment, thus less force was produced by the rectus femoris. Rats with DMM tended to break rather than propel, resulting in lower hip flexion moment, thus less force was produced by the semimembranosus. These results are consistent with lower knee contact forces in the anteroposterior and axial directions. These preliminary data indicate no overloading of the knee joint in rats with DMM, compared with sham surgery. We are currently expanding our workflow to finite element analysis, to examine mechanical cues in the cartilage of these rats (Fig1G)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 149 - 149
4 Apr 2023
Killen B Willems M Hoang H Verschueren S Jonkers I
Full Access

The aim of this research was to determine biomechanical markers which differentiate medial knee osteoarthritis (OA) patients who do and do not show structural progression over a 2-year period. A cohort of 36 subjects was selected from a longitudinal study (Meireles et al 2017) using Kellgren-Lawrence (KL) scores at baseline and 2-year follow-up. The cohort consisted of 10 healthy controls (HC) (KL=0 at both time points), 15 medial knee OA non-progressors (NPKOA) (KL≥1 at baseline and no change over 2 years), and 11 medial knee OA progressors (PKOA) (KL≥1 at baseline and increase of ≥1 over 2 years). 3D integrated motion capture data from three walking trials were processed through a musculoskeletal modelling framework (Smith et al 2016) to estimate knee joint loading parameters (i.e., magnitude of mean contact pressure, and centre of pressure (COP)). Parameters at first and second peak were extracted and compared between groups using Kruskal-Wallis and Mann-Whitney tests. Higher magnitudes were observed in PKOA vs NPKOA, and PKOA vs HC groups at both time points. Additionally, a posterior (1st and 2nd peak), and lateral (2nd peak) shift in medial compartment COP was shown between PKOA and NPKOA, and PKOA and HC subjects. Interestingly, in the studied parameters, no differences were observed between NPKOA and HC groups. Significantly higher magnitude, and a more posterior and lateral COP was observed between PKOA and NPKOA patients. These differences, combined with an absence of difference between NPKOA and HC suggest structural OA progression is driven by a combination of altered loading magnitude and location. These results may serve as guidelines for targeted gait retraining rehabilitation to slow or stop knee OA progression whereby shifting COP anterior and medial and reducing magnitude by ~22% may shift patients from a PKOA to a NPKOA trajectory


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 12 - 12
4 Apr 2023
Thewlis D Bahl J Grace T Smitham P Solomon B
Full Access

This study aimed to quantify self-reported outcomes and walking gait biomechanics in patients following primary and revision THA. The specific goals of this study were to investigate: (i) if primary and revision THA patients have comparable preoperative outcomes; and (2) if revision THA patients have worse postoperative outcomes than primary THA patients. Forty-three patients undergoing primary THA for osteoarthritis and 23 patients undergoing revision THA were recruited and followed longitudinally for their first 12 postoperative months. Reasons for revision were loosening (73%), dislocation (9%), and infection (18%). Patients completed the Hip dysfunction and Osteoarthritis Outcome Score (HOOS), and underwent gait analysis preoperatively, and at 3 and 12 months postoperatively. A 10 camera motion analysis system (V5 Vantage, Vicon, UK) recorded marker trajectories (100 Hz) during walking at self- selected speeds. A generic lower-body musculoskeletal model (Gait2392) was scaled using principal component analysis [1] and the inverse kinematics tool in Opensim 3.3 was used to compute joint angles for the lower limbs in the sagittal plane. Independent samples t-test were used to compare patient reported outcomes between the primary and revision groups at each timepoint. Statistical parametric mapping was used to compare gait patterns between the two groups at each timepoint. Preoperatively, patients undergoing primary THA reported significantly worse pain (p<0.001), symptoms (p<0.001), function (p<0.001), and quality of life (p=0.004). No differences were observed at 3 and 12 months postoperatively between patients who had received a primary or revision THA. The only observed difference in gait pattern was that patients with a revision THA had reduced hip extension at 3 months, but no differences were observed preoperatively and 12 months. Despite the suggestions in the literature that revision THA is bound to have worse outcomes compared to primary THA, we found no differences in in patient-reported outcomes and gait patterns at 12 months postoperatively. This suggests that it may be possible, in some circumstances, for patients following revision THA to achieve similar outcomes to their peers undergoing primary THA


Bone & Joint Research
Vol. 11, Issue 10 | Pages 739 - 750
4 Oct 2022
Shu L Abe N Li S Sugita N

Aims. To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and anterior cruciate ligament-deficient (ACLD) knees during the gait cycle. Methods. In this controlled laboratory study, we developed an original multiscale subject-specific finite element musculoskeletal framework model and integrated it with the tibiofemoral and patellofemoral joints with high-fidelity joint motion representations, to investigate the effects of 2.5° increases in PTS angles on joint dynamics and contact mechanics during the gait cycle. Results. The ACL tensile force in the intact knee was significantly affected with increasing PTS angle. Considerable differences were observed in kinematics and initial posterior femoral translation between the intact and ACLD joints as the PTS angles increased by more than 2.5° (beyond 11.4°). Additionally, a higher contact stress was detected in the peripheral posterior horn areas of the menisci with increasing PTS angle during the gait cycle. The maximum tensile force on the horn of the medial meniscus increased from 73.9 N to 172.4 N in the ACLD joint with increasing PTS angles. Conclusion. Knee joint instability and larger loading on the medial meniscus were found on the ACLD knee even at a 2.5° increase in PTS angle (larger than 11.4°). Our biomechanical findings support recent clinical evidence of a high risk of failure of ACL reconstruction with steeper PTS and the necessity of ACL reconstruction, which would prevent meniscus tear and thus the development or progression of osteoarthritis. Cite this article: Bone Joint Res 2022;11(10):739–750


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 21 - 21
1 Nov 2021
Kaya CS Yucesoy CA
Full Access

Introduction and Objective. Clinically, it is considered that spastic muscles of patients with cerebral palsy (CP) are shortened, and produce higher force in shorter muscle lengths. Yet, direct quantification of spastic muscles’ forces is rare. Remarkably, previous intraoperative tests in which muscle forces are measured directly as a function of joint angle showed for spastic gracilis (GRA) that its passive forces are low, and only a small percentage of its maximum active force is measured in flexed knee positions. However, the relationship of force characteristics of spastic GRA with its muscle-tendon unit length (l. MTU. ) is unknown. Combining intraoperative experiments with participants’ musculoskeletal models developed based on their gait analyses, we aimed to test if spastic GRA muscle (1) operates at short l. MTU. compared to that of typically developing (TD) children, and exerts higher (2) passive and (3) active forces at shorter lengths, within gait-relevant l. MTU. range. Materials and Methods. Ten limbs of seven children with CP (GMFCS-II) were tested. Pre-surgery, gait analyses were conducted. Intraoperatively, isometric spastic GRA distal forces were measured in ten hip-knee joint angle combinations, in two conditions: (i) passive state and (ii) maximal activation of the GRA exclusively. In OpenSim, gait_2392 model was used for each limb to calculate l. MTU. 's per each hip and knee angle combination and the gait-relevant l. MTU. range, and to analyze gait relevant spastic muscle force - l. MTU. data. l. MTU. values were normalized for the participants’ thigh lengths. Two-way ANOVA was used to compare the patients’ l. MTU. to those of the seven age-matched TD children to test the first hypothesis. In order to test the second and the third hypotheses, Spearman's rank correlation coefficient (ρ) was calculated to seek a correlation between the muscle's operational length (represented by mean l. MTU. within gait cycle) and muscular force characteristics (the percent force at shortest l. MTU. of peak force, either in passive or in active conditions) within gait-relevant l. MTU. range. Results. ANOVA showed that l. MTU. 's of spastic GRA are shorter (on average by 15.4%) compared to those of TD. At the shortest gait-relevant l. MTU. , the GRA passive force was 84.6 (13.7)% of the peak passive force; and the active force was 55.8 (33.9)% of the peak active force. Passive state forces show an increase at longer lengths, whereas active state force characteristics vary in a patient-specific way. Spearman's rank correlation indicated weak correlations between muscle's operational length and muscular force characteristics (ρ= −0.30 P= 0.40, and ρ= −0.27 P= 0.45, for passive and active states, respectively). Therefore, only the first hypothesis was confirmed. Conclusions. Novel muscle force - l. MTU. data for spastic GRA were obtained using intraoperative data and modelling combined. The modelling showed in concert with the clinical considerations that spastic GRA may be a shortened muscle. However, because the model does not distinguish the muscle-belly and tendon lengths, it cannot isolate shorter muscle belly length and how this compares to the data of TD children remains unknown. Moreover, the absence of a strong correlation between shorter operational muscle length and higher force production either in passive or in active conditions highlights the influence of other factors (e.g., muscle structural proteins, and muscle mechanical characteristics including intermuscular interactions etc.) on the pathology rather than ascribing it solely to the length of a spastic muscle itself


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 23 - 23
1 Nov 2021
Duquesne K Audenaert E
Full Access

Introduction and Objective. The human body is designed to walk in an efficient way. As energy can be stored in elastic structures, it is no surprise that the strongest elastic structure of the human body, the iliofemoral ligament (IFL), is located in the lower limb. Numerous popular surgical hip interventions, however, affect the structural integrity of the hip capsule and there is a growing evidence that surgical repair of the capsule improves the surgical outcome. Though, the exact contribution of the iliofemoral ligament in energy efficient hip function remains unelucidated. Therefore, the objective of this study was to evaluate the influence of the IFL on energy efficient ambulation. Materials and Methods. In order to assess the potential passive contribution of the IFL to energy efficient ambulation, we simulated walking using the large public dataset (n=50) from Schreiber in a the AnyBody musculoskeletal modeling environment with and without the inclusion of the IFL. The work required from the psoas, iliacus, sartorius, quadriceps and gluteal muscles was evaluated in both situations. Considering the large uncertainty on ligament properties a parameter study was included. Results. A significant reduction in the active component of all hip flexors was observed when the IFL is intact. The required muscle work was found to be reduced by as much as 48% (CI: 29–62%), 61% (CI: 35–84%) and 38% (CI: 2–69%) for the psoas, iliacus, and sartorius muscle respectively. The IFL inclusion has no major effect on the required work from the quadriceps and the gluteal muscle group. The energy storage in the IFL is largest at maximal hip extension and the contribution to forward motion is the largest at the start of the swing phase. Conclusions. The iliofemoral ligament seems to be a crucial structure in energy efficient walking. The findings support need for meticulous reconstruction of the capsule ligament in case of surgical damage


Bone & Joint Research
Vol. 10, Issue 10 | Pages 639 - 649
19 Oct 2021
Bergiers S Hothi H Henckel J Di Laura A Belzunce M Skinner J Hart A

Aims

Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning.

Methods

3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 3 - 3
1 Jun 2021
Dejtiar D Wesseling M Wirix-Speetjens R Perez M
Full Access

Introduction. Although total knee arthroplasty (TKA) is generally considered successful, 16–30% of patients are dissatisfied. There are multiple reasons for this, but some of the most frequent reasons for revision are instability and joint stiffness. A possible explanation for this is that the implant alignment is not optimized to ensure joint stability in the individual patient. In this work, we used an artificial neural network (ANN) to learn the relation between a given standard cruciate-retaining (CR) implant position and model-predicted post-operative knee kinematics. The final aim was to find a patient-specific implant alignment that will result in the estimated post-operative knee kinematics closest to the native knee. Methods. We developed subject-specific musculoskeletal models (MSM) based on magnetic resonance images (MRI) of four ex vivo left legs. The MSM allowed for the estimation of secondary knee kinematics (e.g. varus-valgus rotation) as a function of contact, ligament, and muscle forces in a native and post-TKA knee. We then used this model to train an ANN with 1800 simulations of knee flexion with random implant position variations in the ±3 mm and ±3° range from mechanical alignment. The trained ANN was used to find the implant alignment that resulted in the smallest mean-square-error (MSE) between native and post-TKA tibiofemoral kinematics, which we term the dynamic alignment. Results. Dynamic alignment average MSE kinematic differences to the native knees were 1.47 mm (± 0.89 mm) for translations and 2.89° (± 2.83°) for rotations. The implant variations required were in the range of ±3 mm and ±3° from the starting mechanical alignment. Discussion. In this study we showed that the developed tool has the potential to find an implant position that will restore native tibiofemoral kinematics in TKA. The proposed method might also be used with other alignment strategies, such as to optimize implant position towards native ligament strains. If native knee kinematics are restored, a more normal gait pattern can be achieved, which might result in improved patient satisfaction. The small changes required to achieve the dynamic alignment do not represent large modifications that might compromise implant survivorship. Conclusion. Patient-specific implant position predicted with MSM and ANN can restore native knee function in a post-TKA knee with a standard CR implant


Bone & Joint 360
Vol. 10, Issue 2 | Pages 26 - 28
1 Apr 2021


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 55 - 55
1 Mar 2021
Dandridge O Garner A van Arkel R Amis A Cobb J
Full Access

Abstract. Objectives. The need for gender specific knee arthroplasty is debated. This research aimed to establish whether gender differences in patellar tendon moment arm (PTMA), a composite measure that characterises function of both the patellofemoral and tibiofemoral joints, are a consequence of knee size or other variation. Methods. PTMA about the instantaneous helical axis was calculated from positional data acquired using optical tracking. First, data post-processing was optimised, comparing four smoothing techniques (raw, Butterworth filtered, generalised cross-validation cubic spline interpolated and combined filtered/interpolated) using a fabricated knee. Then PTMA was measured during open-chain extension for N=24 (11 female) fresh-frozen cadaveric knees, with physiologically based loading and extension rates (420°/s) applied. Gender differences in PTMA were assessed before and after accounting for knee size with epicondylar width. Results. Combined smoothing enabled sub-mm accuracy (root-mean-squared (RMS) error 0.16mm, max error 0.47mm), whereas large errors were measured for raw (RMS 3.61mm, max 23.71mm), filtered-only (RMS 1.19mm, max 7.38mm) and interpolated-only (RMS 0.68mm, max 1.80mm) techniques. Before scaling, average PTMA throughout knee flexion was 46mm and mean, maximum, and minimum absolute values of PTMA were larger in males (mean differences >8mm, p<0.001), as were the PTMAs at terminal extension and flexion, and the change in PTMA from peak to terminal extension (differences >4mm, p<0.05). After scaling, the PTMA in deep flexion and the change in PTMA from peak to terminal extension were still larger in male knees (differences >2mm, p<0.05). The flexion angle of peak PTMA, unaffected by scaling, was closer to terminal extension for female knee (female 15°, male 29°, p<0.05). Conclusion. Gender differences in PTMA were identified both before and after accounting for knee size, with implications for gender-specific arthroplasty and musculoskeletal models. The developed measurement framework could also be applied in vivo for accurate measurement of the PTMA. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project