Advertisement for orthosearch.org.uk
Results 1 - 20 of 41
Results per page:
Bone & Joint Open
Vol. 6, Issue 3 | Pages 291 - 297
7 Mar 2025
Zambito K Kushchayeva Y Bush A Pisani P Kushchayeva S Peters M Birch N

Aims

Assessment of bone health is a multifaceted clinical process, incorporating biochemical and diagnostic tests that should be accurate and reproducible. Dual-energy X-ray absorptiometry (DXA) is the reference standard for evaluation of bone mineral density, but has known limitations. Alternatives include quantitative CT (q-CT), MRI, and peripheral quantitative ultrasound (QUS). Radiofrequency echographic multispectrometry (REMS) is a new generation of ultrasound technology used for the assessment of bone mineral density (BMD) at axial sites that is as accurate as quality-assured DXA scans. It also provides an assessment of the quality of bone architecture. This will be of direct value and significance to orthopaedic surgeons when planning surgical procedures, including fracture fixation and surgery of the hip and spine, since BMD alone is a poor predictor of fracture risk.

Methods

The various other fixed-site technologies such as high-resolution peripheral q-CT (HR-pQCT) and MRI offer no further significant prognostic advantages in terms of assessing bone structure and BMD to predict fracture risk. QUS was the only widely adopted non-fixed imaging option for bone health assessment, but it is not considered adequately accurate to provide a quantitative assessment of BMD or provide a prediction of fracture risk. In contrast, REMS has a robust evidence base that demonstrates its equivalence to DXA in determining BMD at axial sites. Fracture prediction using REMS, combining the output of fragility information and BMD, has been established as more accurate than when using BMD alone.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 11 - 11
7 Aug 2024
Warren JP Khan A Mengoni M
Full Access

Objectives. Understanding lumbar facet joint involvement and biomechanical changes post spinal fusion is limited. This study aimed to establish an in vitro model assessing mechanical effects of fusion on human lumbar facet joints, employing synchronized motion, pressure, and stiffness analysis. Methods and Results. Seven human lumbar spinal units (age 54 to 92, ethics 15/YH/0096) underwent fusion via a partial nucleotomy model mimicking a lateral cage approach with PMMA cement injection. Mechanical testing pre and post-fusion included measuring compressive displacement and load, local motion capture, and pressure mapping at the facet joints. pQCT imaging (82 microns isotropic) was carried out at each stage to assess the integrity of the vertebral endplates and quantify the amount of cement injected. Before fusion, relative facet joint displacement (6.5 ± 4.1 mm) at maximum load (1.1 kN) exceeded crosshead displacement (3.9 ± 1.5 mm), with loads transferred across both facet joints. After fusion, facet displacement (2.0 ± 1.2 mm) reduced compared to pre-fusion, as was the crosshead displacement (2.2 ± 0.6 mm). Post-fusion loads (71.4 ± 73.2 N) transferred were reduced compared to pre-fusion levels (194.5 ± 125.4 N). Analysis of CT images showed no endplate damage post-fusion, whilst the IVD tissue: cement volume ratio did not correlate with the post-fusion behaviour of the specimens. Conclusion. An in vitro model showed significant facet movement reduction with stand-alone interbody cage placement. This technique identifies changes in facet movement post-fusion, potentially contributing to subsequent spinal degeneration, highlighting its utility in biomechanical assessment. Conflicts of interest. None. Sources of funding. This work was funded by EPSRC, under grant EP/W015617/1


Bone & Joint Research
Vol. 10, Issue 12 | Pages 820 - 829
15 Dec 2021
Schmidutz F Schopf C Yan SG Ahrend M Ihle C Sprecher C

Aims

The distal radius is a major site of osteoporotic bone loss resulting in a high risk of fragility fracture. This study evaluated the capability of a cortical index (CI) at the distal radius to predict the local bone mineral density (BMD).

Methods

A total of 54 human cadaver forearms (ten singles, 22 pairs) (19 to 90 years) were systematically assessed by clinical radiograph (XR), dual-energy X-ray absorptiometry (DXA), CT, as well as high-resolution peripheral quantitative CT (HR-pQCT). Cortical bone thickness (CBT) of the distal radius was measured on XR and CT scans, and two cortical indices mean average (CBTavg) and gauge (CBTg) were determined. These cortical indices were compared to the BMD of the distal radius determined by DXA (areal BMD (aBMD)) and HR-pQCT (volumetric BMD (vBMD)). Pearson correlation coefficient (r) and intraclass correlation coefficient (ICC) were used to compare the results and degree of reliability.


Bone & Joint Research
Vol. 10, Issue 10 | Pages 677 - 689
1 Oct 2021
Tamaddon M Blunn G Xu W Alemán Domínguez ME Monzón M Donaldson J Skinner J Arnett TR Wang L Liu C

Aims

Minimally manipulated cells, such as autologous bone marrow concentrates (BMC), have been investigated in orthopaedics as both a primary therapeutic and augmentation to existing restoration procedures. However, the efficacy of BMC in combination with tissue engineering is still unclear. In this study, we aimed to determine whether the addition of BMC to an osteochondral scaffold is safe and can improve the repair of large osteochondral defects when compared to the scaffold alone.

Methods

The ovine femoral condyle model was used. Bone marrow was aspirated, concentrated, and used intraoperatively with a collagen/hydroxyapatite scaffold to fill the osteochondral defects (n = 6). Tissue regeneration was then assessed versus the scaffold-only group (n = 6). Histological staining of cartilage with alcian blue and safranin-O, changes in chondrogenic gene expression, microCT, peripheral quantitative CT (pQCT), and force-plate gait analyses were performed. Lymph nodes and blood were analyzed for safety.


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 268 - 272
1 Feb 2020
Diarbakerli E Savvides P Wihlborg A Abbott A Bergström I Gerdhem P

Aims. Idiopathic scoliosis is the most common spinal deformity in adolescents and children. The aetiology of the disease remains unknown. Previous studies have shown a lower bone mineral density in individuals with idiopathic scoliosis, which may contribute to the causation. The aim of the present study was to compare bone health in adolescents with idiopathic scoliosis with controls. Methods. We included 78 adolescents with idiopathic scoliosis (57 female patients) at a mean age of 13.7 years (8.5 to 19.6) and 52 age- and sex-matched healthy controls (39 female patients) at a mean age of 13.8 years (9.1 to 17.6). Mean skeletal age, estimated according to the Tanner-Whitehouse 3 system (TW3), was 13.4 years (7.4 to 17.8) for those with idiopathic scoliosis, and 13.1 years (7.4 to 16.5) for the controls. Mean Cobb angle for those with idiopathic scoliosis was 29° (SD 11°). All individuals were scanned with dual energy x-ray absorptiometry (DXA) and peripheral quantitative CT (pQCT) of the left radius and tibia to assess bone density. Statistical analyses were performed with independent-samples t-test, the Mann-Whitney U test, and the chi-squared test. Results. Compared with controls, adolescents with idiopathic scoliosis had mean lower DXA values in the left femoral neck (0.94 g/cm. 2. (SD 0.14) vs 1.00 g/cm. 2. (SD 0.15)), left total hip (0.94 g/cm. 2. (SD 0.14) vs 1.01 g/cm. 2. (SD 0.17)), L1 to L4 (0.99 g/cm. 2. (SD 0.15) vs 1.06 g/cm. 2. (SD 0.17)) and distal radius (0.35 g/cm. 2. (SD 0.07) vs 0.39 g/cm. 2. (SD 0.08; all p ≤ 0.024), but not in the mid-radius (0.72 g/cm. 2. vs 0.74 g/cm. 2. ; p = 0.198, independent t-test) and total body less head (1,559 g (SD 380) vs 1,649 g (SD 492; p = 0.0.247, independent t-test). Compared with controls, adolescents with idiopathic scoliosis had lower trabecular volume bone mineral density (BMD) on pQCT in the distal radius (184.7 mg/cm. 3. (SD 40.0) vs 201.7 mg/cm. 3. (SD 46.8); p = 0.029), but not in other parts of the radius or the tibia (p ≥ 0.062, Mann-Whitney U test). Conclusion. In the present study, idiopathic scoliosis patients seemed to have lower BMD at central skeletal sites and less evident differences at peripheral skeletal sites when compared with controls. Cite this article: Bone Joint J 2020;102-B(2):268–272


Bone & Joint Research
Vol. 8, Issue 10 | Pages 489 - 494
1 Oct 2019
Klasan A Bäumlein M Dworschak P Bliemel C Neri T Schofer MD Heyse TJ

Objectives

Periprosthetic femoral fractures (PFFs) have a higher incidence with cementless stems. The highest incidence among various cementless stem types was observed with double-wedged stems. Short stems have been introduced as a bone-preserving alternative with a higher incidence of PFF in some studies. The purpose of this study was a direct load-to-failure comparison of a double-wedged cementless stem and a short cementless stem in a cadaveric fracture model.

Methods

Eight hips from four human cadaveric specimens (age mean 76 years (60 to 89)) and eight fourth-generation composite femurs were used. None of the cadaveric specimens had compromised quality (mean T value 0.4 (-1.0 to 5.7)). Each specimen from a pair randomly received either a double-wedged stem or a short stem. A materials testing machine was used for lateral load-to-failure test of up to a maximal load of 5000 N.


Bone & Joint Research
Vol. 7, Issue 7 | Pages 468 - 475
1 Jul 2018
He Q Sun H Shu L Zhu Y Xie X Zhan Y Luo C

Objectives

Researchers continue to seek easier ways to evaluate the quality of bone and screen for osteoporosis and osteopenia. Until recently, radiographic images of various parts of the body, except the distal femur, have been reappraised in the light of dual-energy X-ray absorptiometry (DXA) findings. The incidence of osteoporotic fractures around the knee joint in the elderly continues to increase. The aim of this study was to propose two new radiographic parameters of the distal femur for the assessment of bone quality.

Methods

Anteroposterior radiographs of the knee and bone mineral density (BMD) and T-scores from DXA scans of 361 healthy patients were prospectively analyzed. The mean cortical bone thickness (CBTavg) and the distal femoral cortex index (DFCI) were the two parameters that were proposed and measured. Intra- and interobserver reliabilities were assessed. Correlations between the BMD and T-score and these parameters were investigated and their value in the diagnosis of osteoporosis and osteopenia was evaluated.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 289 - 297
1 Apr 2018
Sanghani-Kerai A Osagie-Clouard L Blunn G Coathup M

Objectives

This study aimed to assess the effect of age and osteoporosis on the proliferative and differentiating capacity of bone-marrow-derived mesenchymal stem cells (MSCs) in female rats. We also discuss the role of these factors on expression and migration of cells along the C-X-C chemokine receptor type 4 (CXCR-4) / stromal derived factor 1 (SDF-1) axis.

Methods

Mesenchymal stem cells were harvested from the femora of young, adult, and osteopenic Wistar rats. Cluster of differentiation (CD) marker and CXCR-4 expression was measured using flow cytometry. Cellular proliferation was measured using Alamar Blue, osteogenic differentiation was measured using alkaline phosphatase expression and alizarin red production, and adipogenic differentiation was measured using Oil red O. Cells were incubated in Boyden chambers to quantify their migration towards SDF-1. Data was analyzed using a Student’s t-test, where p-values < 0.05 were considered significant.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 6 - 11
1 Jan 2018
Wong RMY Choy MHV Li MCM Leung K K-H. Chow S Cheung W Cheng JCY

Objectives

The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models.

Materials and Methods

A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 45 - 45
1 Oct 2016
Niu J Henckel J Hart A Liu* C
Full Access

Osteoarthritis (OA) affects bone cartilage and underlying bone. Mechanically, the underlying bone provides support to the healthy growth of the overlying cartilage. However, with the progress of OA, bone losses and cysts occur in the bone and these would alter the biomechanical behaviour of the joint, and further leading to bone remodelling adversely affect the overlying cartilage. Human femoral head and femoral condyle were collected during hip or knee replacement operation due to the end stage of osteoarthritis (age 50–70), and the cartilage patches were graded and marked. A volunteer patient, with minor cartilage injury in his left knee while the right knee is intact, was used as control. Peripheral quantitative computed tomography (pQCT) was used to scan the bone and to determine the volumetric bone mineral density (vBMD) distribution. The examination of retrieved tissue explants from osteoarthritic patients revealed that patches of cartilage were worn away from the articular surface, and patches of intact cartilage were left. The cysts, ranging from 1 to 10mm were existed in all osteoarthritic bones, and were located close to cartilage defects in the weight-bearing regions, and closely associated with the grade of cartilage defect as measured by pQCT. The bone mineral density (vBMD) distribution demonstrated that the bones around cysts had much higher vBMD than the trabecular bone away from the cysts. Compared to the subchondral bone under thicker cartilage, subchondral bone within cartilage defect has higher vBMD. This may result from the mechanical stimulation as a result of bone-bone direct contact with less protection of cartilage in cartilage defect regions. This study showed an association between cartilage defect and subchondral bone mineral density distribution. Cysts were observed in all osteoarthritic samples and they are located close to cartilage defects in the weight-bearing regions. Cartilage defect altered the loading pattern of the joints, this leading to the bone remodelling and resultant bone structural changes as compared to the normal bone tissues. This work was financially supported by The ARUK Proof of Concept Award (grant no: 21160)


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 51 - 51
1 Oct 2016
Elston P Churchwell J Goodship A Kerns J Birch H
Full Access

Bone has a number of different functions in the skeleton including the physical roles of support, protection and sound wave conduction. The mechanical properties, required for these different functions varies and can be achieved by compositional adaption of the bone material, in addition to changes in shape and architecture. A number of previous studies have demonstrated the relationship between mechanical function and mineral to collagen ratio in bones from different species. The aim of this study is to test the hypothesis that the mineral to collagen ratio is higher in bone with a mechanically harder matrix within a species. The red deer (Cervus elaphus) (n=6) was chosen as a model for studying bone with extreme properties. The mechanical properties of the antler, metacarpal bone and tympanic bulla were defined by indentation using a bench-top indentation platform (Biodent). The mineral to collagen ratio was quantified using Raman spectroscopy. The deposition of mineral was studied at macro-level using pQCT. The results showed that the hardness (Indentation Distance Increase) was lowest in the metacarpal (8.5µm), followed by the bulla bone (9.4µm) and highest in the antler (14.5µm). Raman spectroscopy showed a mineral:collagen ratio of 1:0.10 (bulla), 1:0.13 (metacarpal) and 1:0.15 (antler) for the different bones. This does not follow the more linear trend previously shown between young's modulus and the mineral:collagen ratio. The location of the mineral appeared to differ between bone types with pQCT revealing locations of concentrated density and banding patterns in antler. Interestingly, Raman spectra showed differences in the amide peaks revealing differences in protein structure. The results reject the hypothesis but also suggest that the organisation of mineral and collagen has an impact on the hardness modulus. We demonstrate that the red deer provides a good model for studying bone specialisation. This work will provide the basis for further investigation into collagen as a controlling factor in mineral deposition


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 158 - 158
1 Jul 2014
Elnikety S Pendegrass C Holden C Blunn G
Full Access

Summary. Our results prove that Demineralised Cortical Bone (DCB) can be used as biological tendon graft substitute, combined with correct surgical technique and the use of suture bone anchor early mobilisation can be achieved. Introduction. Surgical repair of tendon injuries aims to restore length, mechanical strength and function. In severe injuries with loss of tendon substance a tendon graft or a substitute is usually used to restore functional length. This is usually associated with donor site morbidity, host tissue reactions and lack of remodelling of the synthetic substitutes which may result in suboptimal outcome. In this study we hypothesise that DCB present in biological tendon environment with early mobilisation and appropriate tension will result in remodelling of the DCB into ligament tissue rather that ossification of the DCB at traditional expected. Our preparatory cadaveric study (abstract submitted to CORS 2013) showed that the repair model used in this animal study has sufficient mechanical strength needed for this animal study. Methods. 6 mature female sheep undergone surgical resection of the distal 1 cm of the right patellar tendon and osteotomy of patellar tendon attachment at the tibial tuberosity under general anaesthesia. Repair was done using DCB with 2 suture bone anchor. Animals were allowed immediate mobilisation after surgery and were sacrificed at 12 weeks. The force passing through the operated and non-operated legs was assessed preoperatively and at week 3, week 6, week 9 and week 12 bay walking the animals over a force plate. Radiographs were taken immediately after euthanasia, the Patella-Tendon-tibia constructs were retrieved and pQCT scan was done. Histological analysis included tenocytes and chondrocytes cell counts, semi-quantitative scoring of the neo-enthesis and polarised microscopy. Result. In this study, none of the retrieved specimens showed any evidence of ossification of the DCB as proved by the pQCT analysis. One animal failed to show satisfactory progress after week 3, X-rays showed patella alta, on specimen retrieval no damage to the DCB was found, sutures and stitches were intact and no evidence of anchor pullout was found. Force plate analysis of the other 5 animals showed satisfactory progression over time with 44% functional weight bearing at week 3 progressing to 79% at week 12. There was full range of movement of the stifle joint after 12 weeks. Histological analysis proved formation of neo-enthesis with evidence of cellulisation, vascularisation and remodelling of the collagen leading to ligamentisation of the DCB. Discussion. Surgical reconstruction of damaged tendons is technically challenging, patellar tendon injuries presents even more challenging situation as it involves weight bearing joint. It is generally accepted that a period of immobilisation with passive range of movement exercises and protected weight bearing for up to 6 weeks post operatively is usually advised. Some surgeons use offloading metal wire to protect the repair for 6 weeks involving second surgical procedure to remove the wire. Demineralised bone is usually used in orthopaedics to utilise its osteogenic properties as bone graft substitute and to enhance osteogenesis in load bearing situations. In our study we explored a potential new use of the demineralised bone as tendon graft substitute, it acts as collagen scaffold allowing host cells to remodel its fibres into ligament like structure


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 45 - 45
1 Mar 2013
Kerns J Gikas P Buckley K Birch H McCarthy I Miles J Briggs T Parker A Matousek P Goodship A
Full Access

Osteoarthritis (OA) is a common, debilitating joint disease involving degeneration of cartilage and bone. It has been suggested that subtle changes in the molecular structure of subchondral bone may precede cartilaginous changes in the osteoarthritic joint. To explore these changes Raman spectroscopy was employed as a diagnostic tool. Raman spectroscopy measures inelastic scattered laser light produced when photons interact with chemical materials. Resultant changes in wavelength form spectra relative to the chemical composition of the given sample: with bone this includes the mineral and matrix components, unlike conventional X-rays. The aim of our study is to explore the hypothesis: Changes in matrix composition of osteoarthritic subchondral bone can be detected with Raman spectroscopy. pQCT and Raman spectroscopy were employed to determine the bone mineral density (BMD) and bone quality, respectively. Ten medial compartment OA and five control (non-OA) tibial plateaus were interrogated and analysis performed to compare OA to control, and medial to lateral compartments. The subchondral bone of the medial OA compartments had higher BMD (p=0.05) and thickness compared to lateral and control samples. Spectral analysis revealed there is no difference between the medial and lateral compartments within either cohort. However, there is a statistically significant (p=0.02) spectral difference between the OA and control specimens. The detection of bone matrix changes in osteoarthritis using Raman spectroscopy contributes to the understanding of the biochemical signature of subchondral bone across diseased and control tibial plateaus. This technique has potential to shed light on the role of bone in osteoarthritis


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 35 - 35
1 Mar 2013
Elnikety S Pendegrass C Alexander S Blunn G
Full Access

Repair of tendon injuries aims to restore length, mechanical strength and function. We hypothesise that Demineralised Cortical Bone (DCB) present in biological tendon environment will result in remodelling of the DCB into ligament tissue. A cadaveric study was carried out to optimize the technique. The distal 1cm of the patellar tendon was excised and DCB was used to bridge the defect. 4 models were examined, Model-1: one anchor, Model-2: 2 anchors, Model-3: 2 anchors with double looped off-loading thread, Model-4: 2 anchors with 3 threads off-loading loop. 6 mature sheep undergone surgical resection of the distal 1cm of the right patellar tendon. Repair was done using DCB with 2 anchors. Immediate mobilisation was allowed, animals were sacrificed at 12 weeks. Force plate assessments were done at weeks 3, 6, 9 and 12. Radiographs were taken and pQCT scan was done prior to histological analysis. In the cadaveric study, the median failure force for the 4 models; 250N, 290N, 767N and 934N respectively. In the animal study, none of the specimens showed evidence of ossification of the DCB. One animal failed to show satisfactory progress, X-rays showed patella alta, on specimen retrieval there was no damage to the DCB and sutures and no evidence of anchor pullout. Functional weight bearing was 79% at week12. Histological analysis proved remodelling of the collagen leading to ligamentisation of the DCB. Results prove that DCB can be used as biological tendon substitute, combined with the use of suture bone anchor early mobilisation can be achieved


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1433 - 1438
1 Oct 2012
Lam W Guo X Leung K Kwong KSC

This study was designed to test the hypothesis that the sensory innervation of bone might play an important role in sensing and responding to low-intensity pulsed ultrasound and explain its effect in promoting fracture healing. In 112 rats a standardised mid-shaft tibial fracture was created, supported with an intramedullary needle and divided into four groups of 28. These either had a sciatic neurectomy or a patellar tendon resection as control, and received the ultrasound or not as a sham treatment. Fracture union, callus mineralisation and remodelling were assessed using plain radiography, peripheral quantitative computed tomography and histomorphology.

Daily ultrasound treatment significantly increased the rate of union and the volumetric bone mineral density in the fracture callus in the neurally intact rats (p = 0.025), but this stimulating effect was absent in the rats with sciatic neurectomy. Histomorphology demonstrated faster maturation of the callus in the group treated with ultrasound when compared with the control group. The results supported the hypothesis that intact innervation plays an important role in allowing low-intensity pulsed ultrasound to promote fracture healing.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 53 - 53
1 Jun 2012
Lam T Hung V Yeung H Yu F Chan C Ng B Lee K Qin L Cheng J
Full Access

Introduction. Adolescent idiopathic scoliosis (AIS) is associated with low bone mineral density, which could be related to its etiopathogenesis. Apart from bone density, bone micro-architectures are equally important for better understanding of disease initiation and progression in AIS. Quantitative assessment of bone quality is hampered by the invasive nature of investigations, until recently when the high-resolution pQCT (XtremeCT) became available for revolutionary in-vivo microimaging and derivation of bone micro-architectural parameters. Our objective was to use this powerful instrument to study bone qualities in AIS and compare findings with those from healthy controls. Methods. 48 girls with AIS and 84 sex-matched healthy controls were recruited. Cobb angle was measured with standing radiographs, and imaging of the non-dominant distal radius was captured with XtremeCT according to a standard protocol. Results. The mean age was 13·48 years for controls and 13·54 years for patients with AIS (p=0·773). The mean Cobb's angle for AIS was 32·7° (SD 5·8°). Volumetric bone density, cortical thickness, trabecular bone density, meta-trabecular density, inner-trabecular density, bone volume fraction, and trabecular thickness were all lower in patients with AIS than in controls, and differences were statistically significant (p<0·05). Conclusions. This is the first report describing the differences in radiographic bone micro-architectures between patients with AIS and controls. All significant parameters were lower in the AIS group, indicating deranged bony quality that could have an important role in disease initiation or progression in AIS. The exact biomechanical process and how this is related to the etiopathogenesis of AIS warrant further studies. Acknowledgments. This study is supported by RGC-HKSAR (project number 467808 and 468809)


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 31 - 31
1 May 2012
Findlay C Jameson S Marshall S Walker B Walker C Meek R Nicol A
Full Access

Background. Following an anterior cruciate ligament (ACL) injury, the affected knee is known to experience bone loss and is at significant risk of becoming osteoporotic. Surgical reconstruction is performed to attempt to restore the function of the knee and theoretically restore this bone density loss. Cross-sectional analysis of the proximal tibia using peripheral quantitative computed tomography (pQCT) enables localised analysis of bone mineral density (BMD) changes. The aim of this study was to establish the pattern of bone density changes in the tibia pre- and post- ACL reconstruction using pQCT image analysis. Methods. Eight patients who underwent ACL reconstruction were included. A cross sectional analysis of the proximal tibia was performed using a pQCT scanner pre-operatively and one to two years post-operatively on both the injured and contralateral (control) knee. The proximal two and three percent slices [S2 and S3] along the tibia were acquired. These were exported to Matlab(tm) and automated segmentation was performed to remove the tibia from its surrounding structures. Cross correlation was applied to co-register pairs of images and patterns of change in BMD were mapped using a t-test (p<0.05). Connected components of pixels with significant change in BMD were created and used to assess the impact of ACL injury & reconstruction on the proximal tibial BMD. Results. Prior to surgical ACL reconstruction, the BMD in the injured leg was significantly reduced relative to the control leg [S2: p=0.002, S3: p=0.002]. Post surgery, the proximal tibial BMD did not change in either leg [Control S2: p=0.102, S3: p=0.181; Injured S2: p=0.093, S3: p=0.439]. The post surgical images demonstrated patterns of increasing BMD surrounding the tunnel in the form of compact bone. Discussion. A significant reduction in proximal tibial BMD was observed in the ACL injured legs relative to control legs. The pattern of pre-operative bone loss was generally observed to be global across the entire slice. No change in BMD was observed following ACL reconstruction, in either injured or control leg. These results indicate that proximal tibial BMD is reduced and does not change after ACL reconstruction


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 53 - 53
1 Mar 2012
Winet H
Full Access

Introduction. The interstitial fluid of bone fluid flow is supplied by flowing blood. Blood flow is determined by three kinds of muscles: cardiac, smooth, and skeletal. Cardiac muscle establishes baseline blood pressure. Smooth muscle controls vessel diameter and skeletal muscle creates intermittent intravascular pressure pulses. For the tibia the relevant skeletal muscle is the gastrocnemius which functions as a muscle pump. This study tested the hypotheses: 1) skeletal muscle-caused pressure pulses increase cortical blood flow, 2) extravasation of vascular fluid and, consequently, interstitial bone fluid flow are enhanced by resultant increased microvascular pressure and 3) bone healing is enhanced by increased bone fluid flow. Methods. Eighteen skeletally mature female New Zealand white rabbits were implanted with bone chamber windows (BCIs) as described previously. The windows were exposed at three weeks and observed weekly until Week 10 using intravital microscopy. During observation, the subject was suspended in prone position in a mesh fabric torso sling jacket so as to eliminate gravity-based reaction forces. Electrodes of a transcutaneous electrical nerve stimulator (TENS) were gel-glued at each rabbits gastroc-soleus position; but activated only in the 11 experimentals. A 4Hz 2.8 ± 1.3V impulse was delivered for 60 minutes. Still and video images were obtained at 0, 2, and 60 minutes following injection of 1μm fluorescent microspheres. Each such injection was followed by injection of 70 kD FITC- or RITC-dextran to define vascularity and capillary filtration. Additional still images were obtained at 5, 30, and 55 minutes. Muscle contraction forces during TENS were obtained acutely following the Week 10 observation with a Futek force transducer cell through an attached nylon suture. Bone mineral density was obtained at Week 3 and Week 10 with a Stratec pQCT and associated software. Data were analyzed statistically using a Wilcoxon signed rank test. Results. All three hypotheses were supported statistically by the data. The average force produced by TENS stimulated gastrocnemius contraction was 18.98 ± 9.42 N/kg muscle. This produced a microstrain of 192μe in bone around the BCI. Bloodflow results are shown in the figure. On average, flow decreased in controls by 12.6% and increased in experimentals by about 2%. Capillary filtration in experimentals was about 34.6% higher than controls after 60 minutes of TENS. Bone formation rate was 62.5% higher with TENS. Conclusion. In order to understand the role of fluid flows in bone physiology, we need to know the how and where of movement. These results suggest the part played by skeletal muscle in bone fluid movement cannot be ignored. As with many evolutionary adaptations, the muscle pump's hydrodynamic contribution to bone may be redundant and merely serve as a backup to percolation from poroelastic deformation. On the other hand, it may be crucial in disuse osteoporosis instigating conditions such as microgravity. The measured increases in capillary filtration and blood flow suggest that intravascular pressure which drives the former and resultant percolation has been increased by the muscle pump. It follows that fluid shear on cortical bone cells also increased. The challenge now is to obtain local flow measurements that would tell us how much


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 340 - 340
1 May 2010
Abrassart S Hoffmeyer P
Full Access

Objectives: The aim of this study was to quantify bone microarchitecture within the glenoid fossa of the scapula. High-resolution micro-computed tomography ([mu]CT) imaging have been instrumental in providing true quantitative and qualitative three-dimensional data on baseline bone morphology. Materials and Methods: 25 fresh-frozen human cadaveric shoulders were analysed. The mean age of the specimens was 66 years. All scapulae were inspected for normal anatomic landmarks. The glenoids were cut at the glenoid neck and at the base of the coracoid process. The total, trabecular, and cortical BMDs of the 5 regions of the glenoids were determined by use of peripheral quantitative computed tomography (pQCT) (Xtrem Ct;Scanco, Zurich, Ch) Each glenoid was fixed horizontally in a custom-made jig, and axial pQCT scans (pixel size,1536/1536; slice thickness 80 microns), perpendicular to the articular surface, were obtained at the level of each area. From the resulting binarized three-dimensional reconstruction, Scanco software was used to calculate the bone volume per tissue volume; mean trabecular separation; mean trabecular number, connectivity density. Results: The total BMD of the posterior and superior glenoid were significantly higher than those of the anterior and inferior glenoid. Trabecular BMD of the posterior glenoid was significantly higher than that of the anterior glenoid, and cortical BMD of the superior glenoid was significantly higher than that of the inferior glenoid. The mean total BMD in different regions of 20 glenoid specimens ranged from 0,243 to 0,489 g/cm2. The center of the glenoid was surprisingly poor in trabecular structures as we found a bony gap at 8 mm of distance from the articular surface. Conclusions and clinical relevance: Although the specimen age was quite high in our material, we believe aging does not affect our study as shoulders prosthesis are generally performed on old patients. In the future, component design should use areas of stronger subchondral bone. Posterior and superior bone area could be another alternative for fixation in decreasing glenoid-loosening rates. As the inferior center of the glenoid is an area devoided of trabecular bone, center-keel design component doesn’t seem to be the best choice


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 73 - 73
1 Mar 2010
Claes L Ignatius A Schorlemmer S Horvath D Veeser A
Full Access

Introduction: Lateral callus distraction can be used to treat bone defects and increase bone diameter. However, this requires longitudinal splitting of the bone, which can be avoided by a new method. Material and Methods: Twenty sheep were operated at the medial site of the tibia. After drilling 1 mm holes into the medullary cavity, a titanium plate with a hydroxyapatite coating was attached to the bone surface using a custom-made device. After 10 days this device was distracted 0.3 mm, twice a day until a distance of 6 mm was achieved (n=10). In the control group (n=10), the titanium plate was adjusted to a distance of 6 mm. All sheep received fluorescence labeling. 10 weeks p. o., bone formation underneath the titanium plate was investigated using pQCT, x-ray and histomorphology. Results: In the distraction group there was 5 times more newly formed bone. > Bone columns bridging the space between the cortex and titanium plate were found. In the first 30 days, the bone formation was significantly enhanced in the distraction group as indicated by the fluorescent labeling. Conclusion: A strain induced bone formation is not only possible between two bony surfaces created by an osteotomy, but also between a bony surface and an appropriately designed implant. This new method allows for bone apposition in a large number of bones, which could not be properly treated in the past