Assessment of bone health is a multifaceted clinical process, incorporating biochemical and diagnostic tests that should be accurate and reproducible. Dual-energy X-ray absorptiometry (DXA) is the reference standard for evaluation of bone mineral density, but has known limitations. Alternatives include quantitative CT (q-CT), MRI, and peripheral quantitative ultrasound (QUS). Radiofrequency echographic multispectrometry (REMS) is a new generation of ultrasound technology used for the assessment of bone mineral density (BMD) at axial sites that is as accurate as quality-assured DXA scans. It also provides an assessment of the quality of bone architecture. This will be of direct value and significance to orthopaedic surgeons when planning surgical procedures, including fracture fixation and surgery of the hip and spine, since BMD alone is a poor predictor of fracture risk. The various other fixed-site technologies such as high-resolution peripheral q-CT (HR-pQCT) and MRI offer no further significant prognostic advantages in terms of assessing bone structure and BMD to predict fracture risk. QUS was the only widely adopted non-fixed imaging option for bone health assessment, but it is not considered adequately accurate to provide a quantitative assessment of BMD or provide a prediction of fracture risk. In contrast, REMS has a robust evidence base that demonstrates its equivalence to DXA in determining BMD at axial sites. Fracture prediction using REMS, combining the output of fragility information and BMD, has been established as more accurate than when using BMD alone.Aims
Methods
Objectives. Understanding lumbar facet joint involvement and biomechanical changes post spinal fusion is limited. This study aimed to establish an in vitro model assessing mechanical effects of fusion on human lumbar facet joints, employing synchronized motion, pressure, and stiffness analysis. Methods and Results. Seven human lumbar spinal units (age 54 to 92, ethics 15/YH/0096) underwent fusion via a partial nucleotomy model mimicking a lateral cage approach with PMMA cement injection. Mechanical testing pre and post-fusion included measuring compressive displacement and load, local motion capture, and pressure mapping at the facet joints.
The distal radius is a major site of osteoporotic bone loss resulting in a high risk of fragility fracture. This study evaluated the capability of a cortical index (CI) at the distal radius to predict the local bone mineral density (BMD). A total of 54 human cadaver forearms (ten singles, 22 pairs) (19 to 90 years) were systematically assessed by clinical radiograph (XR), dual-energy X-ray absorptiometry (DXA), CT, as well as high-resolution peripheral quantitative CT (HR-pQCT). Cortical bone thickness (CBT) of the distal radius was measured on XR and CT scans, and two cortical indices mean average (CBTavg) and gauge (CBTg) were determined. These cortical indices were compared to the BMD of the distal radius determined by DXA (areal BMD (aBMD)) and HR-pQCT (volumetric BMD (vBMD)). Pearson correlation coefficient (r) and intraclass correlation coefficient (ICC) were used to compare the results and degree of reliability.Aims
Methods
Minimally manipulated cells, such as autologous bone marrow concentrates (BMC), have been investigated in orthopaedics as both a primary therapeutic and augmentation to existing restoration procedures. However, the efficacy of BMC in combination with tissue engineering is still unclear. In this study, we aimed to determine whether the addition of BMC to an osteochondral scaffold is safe and can improve the repair of large osteochondral defects when compared to the scaffold alone. The ovine femoral condyle model was used. Bone marrow was aspirated, concentrated, and used intraoperatively with a collagen/hydroxyapatite scaffold to fill the osteochondral defects (n = 6). Tissue regeneration was then assessed versus the scaffold-only group (n = 6). Histological staining of cartilage with alcian blue and safranin-O, changes in chondrogenic gene expression, microCT, peripheral quantitative CT (pQCT), and force-plate gait analyses were performed. Lymph nodes and blood were analyzed for safety.Aims
Methods
Aims. Idiopathic scoliosis is the most common spinal deformity in adolescents and children. The aetiology of the disease remains unknown. Previous studies have shown a lower bone mineral density in individuals with idiopathic scoliosis, which may contribute to the causation. The aim of the present study was to compare bone health in adolescents with idiopathic scoliosis with controls. Methods. We included 78 adolescents with idiopathic scoliosis (57 female patients) at a mean age of 13.7 years (8.5 to 19.6) and 52 age- and sex-matched healthy controls (39 female patients) at a mean age of 13.8 years (9.1 to 17.6). Mean skeletal age, estimated according to the Tanner-Whitehouse 3 system (TW3), was 13.4 years (7.4 to 17.8) for those with idiopathic scoliosis, and 13.1 years (7.4 to 16.5) for the controls. Mean Cobb angle for those with idiopathic scoliosis was 29° (SD 11°). All individuals were scanned with dual energy x-ray absorptiometry (DXA) and peripheral quantitative CT (pQCT) of the left radius and tibia to assess bone density. Statistical analyses were performed with independent-samples t-test, the Mann-Whitney U test, and the chi-squared test. Results. Compared with controls, adolescents with idiopathic scoliosis had mean lower DXA values in the left femoral neck (0.94 g/cm. 2. (SD 0.14) vs 1.00 g/cm. 2. (SD 0.15)), left total hip (0.94 g/cm. 2. (SD 0.14) vs 1.01 g/cm. 2. (SD 0.17)), L1 to L4 (0.99 g/cm. 2. (SD 0.15) vs 1.06 g/cm. 2. (SD 0.17)) and distal radius (0.35 g/cm. 2. (SD 0.07) vs 0.39 g/cm. 2. (SD 0.08; all p ≤ 0.024), but not in the mid-radius (0.72 g/cm. 2. vs 0.74 g/cm. 2. ; p = 0.198, independent t-test) and total body less head (1,559 g (SD 380) vs 1,649 g (SD 492; p = 0.0.247, independent t-test). Compared with controls, adolescents with idiopathic scoliosis had lower trabecular volume bone mineral density (BMD) on
Periprosthetic femoral fractures (PFFs) have a higher incidence with cementless stems. The highest incidence among various cementless stem types was observed with double-wedged stems. Short stems have been introduced as a bone-preserving alternative with a higher incidence of PFF in some studies. The purpose of this study was a direct load-to-failure comparison of a double-wedged cementless stem and a short cementless stem in a cadaveric fracture model. Eight hips from four human cadaveric specimens (age mean 76 years (60 to 89)) and eight fourth-generation composite femurs were used. None of the cadaveric specimens had compromised quality (mean T value 0.4 (-1.0 to 5.7)). Each specimen from a pair randomly received either a double-wedged stem or a short stem. A materials testing machine was used for lateral load-to-failure test of up to a maximal load of 5000 N.Objectives
Methods
Researchers continue to seek easier ways to evaluate the quality of bone and screen for osteoporosis and osteopenia. Until recently, radiographic images of various parts of the body, except the distal femur, have been reappraised in the light of dual-energy X-ray absorptiometry (DXA) findings. The incidence of osteoporotic fractures around the knee joint in the elderly continues to increase. The aim of this study was to propose two new radiographic parameters of the distal femur for the assessment of bone quality. Anteroposterior radiographs of the knee and bone mineral density (BMD) and T-scores from DXA scans of 361 healthy patients were prospectively analyzed. The mean cortical bone thickness (CBTavg) and the distal femoral cortex index (DFCI) were the two parameters that were proposed and measured. Intra- and interobserver reliabilities were assessed. Correlations between the BMD and T-score and these parameters were investigated and their value in the diagnosis of osteoporosis and osteopenia was evaluated.Objectives
Methods
This study aimed to assess the effect of age and osteoporosis on the proliferative and differentiating capacity of bone-marrow-derived mesenchymal stem cells (MSCs) in female rats. We also discuss the role of these factors on expression and migration of cells along the C-X-C chemokine receptor type 4 (CXCR-4) / stromal derived factor 1 (SDF-1) axis. Mesenchymal stem cells were harvested from the femora of young, adult, and osteopenic Wistar rats. Cluster of differentiation (CD) marker and CXCR-4 expression was measured using flow cytometry. Cellular proliferation was measured using Alamar Blue, osteogenic differentiation was measured using alkaline phosphatase expression and alizarin red production, and adipogenic differentiation was measured using Oil red O. Cells were incubated in Boyden chambers to quantify their migration towards SDF-1. Data was analyzed using a Student’s Objectives
Methods
The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models. A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted.Objectives
Materials and Methods
Osteoarthritis (OA) affects bone cartilage and underlying bone. Mechanically, the underlying bone provides support to the healthy growth of the overlying cartilage. However, with the progress of OA, bone losses and cysts occur in the bone and these would alter the biomechanical behaviour of the joint, and further leading to bone remodelling adversely affect the overlying cartilage. Human femoral head and femoral condyle were collected during hip or knee replacement operation due to the end stage of osteoarthritis (age 50–70), and the cartilage patches were graded and marked. A volunteer patient, with minor cartilage injury in his left knee while the right knee is intact, was used as control. Peripheral quantitative computed tomography (pQCT) was used to scan the bone and to determine the volumetric bone mineral density (vBMD) distribution. The examination of retrieved tissue explants from osteoarthritic patients revealed that patches of cartilage were worn away from the articular surface, and patches of intact cartilage were left. The cysts, ranging from 1 to 10mm were existed in all osteoarthritic bones, and were located close to cartilage defects in the weight-bearing regions, and closely associated with the grade of cartilage defect as measured by
Bone has a number of different functions in the skeleton including the physical roles of support, protection and sound wave conduction. The mechanical properties, required for these different functions varies and can be achieved by compositional adaption of the bone material, in addition to changes in shape and architecture. A number of previous studies have demonstrated the relationship between mechanical function and mineral to collagen ratio in bones from different species. The aim of this study is to test the hypothesis that the mineral to collagen ratio is higher in bone with a mechanically harder matrix within a species. The red deer (Cervus elaphus) (n=6) was chosen as a model for studying bone with extreme properties. The mechanical properties of the antler, metacarpal bone and tympanic bulla were defined by indentation using a bench-top indentation platform (Biodent). The mineral to collagen ratio was quantified using Raman spectroscopy. The deposition of mineral was studied at macro-level using
Summary. Our results prove that Demineralised Cortical Bone (DCB) can be used as biological tendon graft substitute, combined with correct surgical technique and the use of suture bone anchor early mobilisation can be achieved. Introduction. Surgical repair of tendon injuries aims to restore length, mechanical strength and function. In severe injuries with loss of tendon substance a tendon graft or a substitute is usually used to restore functional length. This is usually associated with donor site morbidity, host tissue reactions and lack of remodelling of the synthetic substitutes which may result in suboptimal outcome. In this study we hypothesise that DCB present in biological tendon environment with early mobilisation and appropriate tension will result in remodelling of the DCB into ligament tissue rather that ossification of the DCB at traditional expected. Our preparatory cadaveric study (abstract submitted to CORS 2013) showed that the repair model used in this animal study has sufficient mechanical strength needed for this animal study. Methods. 6 mature female sheep undergone surgical resection of the distal 1 cm of the right patellar tendon and osteotomy of patellar tendon attachment at the tibial tuberosity under general anaesthesia. Repair was done using DCB with 2 suture bone anchor. Animals were allowed immediate mobilisation after surgery and were sacrificed at 12 weeks. The force passing through the operated and non-operated legs was assessed preoperatively and at week 3, week 6, week 9 and week 12 bay walking the animals over a force plate. Radiographs were taken immediately after euthanasia, the Patella-Tendon-tibia constructs were retrieved and
Osteoarthritis (OA) is a common, debilitating joint disease involving degeneration of cartilage and bone. It has been suggested that subtle changes in the molecular structure of subchondral bone may precede cartilaginous changes in the osteoarthritic joint. To explore these changes Raman spectroscopy was employed as a diagnostic tool. Raman spectroscopy measures inelastic scattered laser light produced when photons interact with chemical materials. Resultant changes in wavelength form spectra relative to the chemical composition of the given sample: with bone this includes the mineral and matrix components, unlike conventional X-rays. The aim of our study is to explore the hypothesis: Changes in matrix composition of osteoarthritic subchondral bone can be detected with Raman spectroscopy.
Repair of tendon injuries aims to restore length, mechanical strength and function. We hypothesise that Demineralised Cortical Bone (DCB) present in biological tendon environment will result in remodelling of the DCB into ligament tissue. A cadaveric study was carried out to optimize the technique. The distal 1cm of the patellar tendon was excised and DCB was used to bridge the defect. 4 models were examined, Model-1: one anchor, Model-2: 2 anchors, Model-3: 2 anchors with double looped off-loading thread, Model-4: 2 anchors with 3 threads off-loading loop. 6 mature sheep undergone surgical resection of the distal 1cm of the right patellar tendon. Repair was done using DCB with 2 anchors. Immediate mobilisation was allowed, animals were sacrificed at 12 weeks. Force plate assessments were done at weeks 3, 6, 9 and 12. Radiographs were taken and
This study was designed to test the hypothesis
that the sensory innervation of bone might play an important role
in sensing and responding to low-intensity pulsed ultrasound and
explain its effect in promoting fracture healing. In 112 rats a
standardised mid-shaft tibial fracture was created, supported with
an intramedullary needle and divided into four groups of 28. These
either had a sciatic neurectomy or a patellar tendon resection as
control, and received the ultrasound or not as a sham treatment.
Fracture union, callus mineralisation and remodelling were assessed using
plain radiography, peripheral quantitative computed tomography and
histomorphology. Daily ultrasound treatment significantly increased the rate of
union and the volumetric bone mineral density in the fracture callus
in the neurally intact rats (p = 0.025), but this stimulating effect
was absent in the rats with sciatic neurectomy. Histomorphology
demonstrated faster maturation of the callus in the group treated
with ultrasound when compared with the control group. The results
supported the hypothesis that intact innervation plays an important
role in allowing low-intensity pulsed ultrasound to promote fracture
healing.
Introduction. Adolescent idiopathic scoliosis (AIS) is associated with low bone mineral density, which could be related to its etiopathogenesis. Apart from bone density, bone micro-architectures are equally important for better understanding of disease initiation and progression in AIS. Quantitative assessment of bone quality is hampered by the invasive nature of investigations, until recently when the high-resolution
Background. Following an anterior cruciate ligament (ACL) injury, the affected knee is known to experience bone loss and is at significant risk of becoming osteoporotic. Surgical reconstruction is performed to attempt to restore the function of the knee and theoretically restore this bone density loss. Cross-sectional analysis of the proximal tibia using peripheral quantitative computed tomography (pQCT) enables localised analysis of bone mineral density (BMD) changes. The aim of this study was to establish the pattern of bone density changes in the tibia pre- and post- ACL reconstruction using
Introduction. The interstitial fluid of bone fluid flow is supplied by flowing blood. Blood flow is determined by three kinds of muscles: cardiac, smooth, and skeletal. Cardiac muscle establishes baseline blood pressure. Smooth muscle controls vessel diameter and skeletal muscle creates intermittent intravascular pressure pulses. For the tibia the relevant skeletal muscle is the gastrocnemius which functions as a muscle pump. This study tested the hypotheses: 1) skeletal muscle-caused pressure pulses increase cortical blood flow, 2) extravasation of vascular fluid and, consequently, interstitial bone fluid flow are enhanced by resultant increased microvascular pressure and 3) bone healing is enhanced by increased bone fluid flow. Methods. Eighteen skeletally mature female New Zealand white rabbits were implanted with bone chamber windows (BCIs) as described previously. The windows were exposed at three weeks and observed weekly until Week 10 using intravital microscopy. During observation, the subject was suspended in prone position in a mesh fabric torso sling jacket so as to eliminate gravity-based reaction forces. Electrodes of a transcutaneous electrical nerve stimulator (TENS) were gel-glued at each rabbits gastroc-soleus position; but activated only in the 11 experimentals. A 4Hz 2.8 ± 1.3V impulse was delivered for 60 minutes. Still and video images were obtained at 0, 2, and 60 minutes following injection of 1μm fluorescent microspheres. Each such injection was followed by injection of 70 kD FITC- or RITC-dextran to define vascularity and capillary filtration. Additional still images were obtained at 5, 30, and 55 minutes. Muscle contraction forces during TENS were obtained acutely following the Week 10 observation with a Futek force transducer cell through an attached nylon suture. Bone mineral density was obtained at Week 3 and Week 10 with a Stratec
Objectives: The aim of this study was to quantify bone microarchitecture within the glenoid fossa of the scapula. High-resolution micro-computed tomography ([mu]CT) imaging have been instrumental in providing true quantitative and qualitative three-dimensional data on baseline bone morphology. Materials and Methods: 25 fresh-frozen human cadaveric shoulders were analysed. The mean age of the specimens was 66 years. All scapulae were inspected for normal anatomic landmarks. The glenoids were cut at the glenoid neck and at the base of the coracoid process. The total, trabecular, and cortical BMDs of the 5 regions of the glenoids were determined by use of peripheral quantitative computed tomography (pQCT) (Xtrem Ct;Scanco, Zurich, Ch) Each glenoid was fixed horizontally in a custom-made jig, and axial
Introduction: Lateral callus distraction can be used to treat bone defects and increase bone diameter. However, this requires longitudinal splitting of the bone, which can be avoided by a new method. Material and Methods: Twenty sheep were operated at the medial site of the tibia. After drilling 1 mm holes into the medullary cavity, a titanium plate with a hydroxyapatite coating was attached to the bone surface using a custom-made device. After 10 days this device was distracted 0.3 mm, twice a day until a distance of 6 mm was achieved (n=10). In the control group (n=10), the titanium plate was adjusted to a distance of 6 mm. All sheep received fluorescence labeling. 10 weeks p. o., bone formation underneath the titanium plate was investigated using