This edition of the Cochrane Corner looks at the three reviews that were published in the second half of 2023: surgical versus non-surgical interventions for displaced intra-articular calcaneal fractures; cryotherapy following total knee arthroplasty; and physical activity and education about physical activity for chronic musculoskeletal pain in children and adolescents.
The aim of this study is to print 3D polycaprolactone (PCL) scaffolds at high and low temperature (HT/LT) combined with salt leaching to induced porosity/larger pore size and improve material degradation without compromising cellular activity of printed scaffolds. PCL solutions with sodium chloride (NaCl) particles either directly printed in LT or were casted, dried, and printed in HT followed by washing in deionized water (DI) to leach out the salt. Micro-Computed tomography (Micro-CT) and scanning electron microscope (SEM) were performed for morphological analysis. The effect of the porosity on the mechanical properties and degradation was evaluated by a tensile test and etching with NaOH, respectively. To evaluate cellular responses, human bone marrow-derived mesenchymal stem/stromal cells (hBMSCs) were cultured on the scaffolds and their viability, attachment, morphology, proliferation, and osteogenic differentiation were assessed. Micro-CT and SEM analysis showed that porosity induced by the salt leaching increased with increasing the salt content in HT, however no change was observed in LT. Structure thickness reduced with elevating NaCl content. Mass loss of scaffolds dramatically increased with elevated porosity in HT. Dog bone-shaped specimens with induced porosity exhibited higher ductility and
This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD). The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.Aims
Methods
Rotator cuff tears are common, with failure rates of up to 94% for large and massive tears. 1. For such tears, reattachment of the musculotendinous unit back to bone is problematic, and any possible tendon-bone repair heals through scar tissue rather than the specially adapted native enthesis. We aim to develop and characterise a novel soft-hard tissue connector device, specific to repairing/bridging the tendon-bone injury in significant rotator cuff tears, employing decellularised animal bone partially demineralised at one end for soft tissue continuation. Optimisation samples of 15×10×5mm. 3. , trialled as separate cancellous and cortical bone samples, were cut from porcine femoral condyles and shafts, respectively. Samples underwent 1-week progressive stepwise decellularisation and a partial demineralisation process of half wax embedding and acid bathing. Characterisations were performed histologically for the presence/absence of cellular staining in both peripheral and central tissue areas (n=3 for each cortical/cancellous, test/PBS control and peripheral/central group), and with BioDent reference point indentation (RPI) for pre- and post-processing mechanical properties. Histology revealed absent cellular staining in peripheral and central cancellous samples, whilst reduced in cortical samples compared to controls. Cancellous samples decreased in wet mass after decellularisation by 45.3% (p<0.001). RPI measurements associated with
This study aims to assess the fracture mechanics of type-2 diabetic (T2D) femoral bone using innovative site-specific tests, whilst also examining the cortical and trabecular bone microarchitecture from various regions using micro-computed tomography (CT) of the femur as the disease progresses. Male [Zucker Diabetic Fatty (ZDF: fa/fa) (T2D) and Zucker Lean (ZL: fa/+) (Control)] rats were euthanized at 12-weeks of age, thereafter, right and left femora were dissected (Right femora: n = 6, per age, per condition; Left femora: n=8-9, per age, per condition). Right femurs were notched in the posterior of the midshaft. Micro-CT was used to scan the proximal femur, notched and unnotched femoral midshaft (cortical) of the right femur and the distal metaphysis (trabecular) of the left femur to investigate microarchitecture and composition. Right femurs were fracture
In this study, we developed biocompatible adhesive which enables implanted chondrogenic-enhanced hASCs being strongly fixed to the lesion site of defected cartilage. The bioengineered mussel adhesive protein (MAP) was produced and purified using a bacterial expression system as previously reported. The cell encapsulated coacervate was formulated with two polyelectrolyte, the MAP and 723kDa hyaluronic acid (HA). MAP formed liquid microdroplets with HA and subsequently gelated into microparticles, which is highly viscous and strongly adhesive. The MAP with chondro-induced hASCs were implanted on the osteochondral defect created in the patellar groove/condyle of OA-induced rabbits. Rabbits were allocated to three different groups as follows: Group1 – Fibrin only; Group2 – Fibrin with hASCs (1.5×10. 6. chondro-induced hASCs); Group3; MAP with hASCs. The implanted cells were labeled with a fluorescent dye for in vivo visualization. After 35 days, fluorescent signals were more potently detected for MAP with hASCs group than Fibrin with hASCs group in osteochondral defect model. Moreover, histological assessment showed that MAP with hASCs group had the best healing and covered with hyaline cartilage-like tissue. The staining image shows that MAP with hASCs group were filled with perfectly differentiated chondrocytes. Although Fibrin with hASCs group had better healing than fibrin only group, it was filled with fibrous cartilage which owes its flexibility and
This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis.Aims
Methods
This study aimed to explore the diagnostic value of synovial fluid neutrophil extracellular traps (SF-NETs) in periprosthetic joint infection (PJI) diagnosis, and compare it with that of microbial culture, serum ESR and CRP, synovial white blood cell (WBC) count, and polymorphonuclear neutrophil percentage (PMN%). In a single health centre, patients with suspected PJI were enrolled from January 2013 to December 2021. The inclusion criteria were: 1) patients who were suspected to have PJI; 2) patients with complete medical records; and 3) patients from whom sufficient synovial fluid was obtained for microbial culture and NET test. Patients who received revision surgeries due to aseptic failure (AF) were selected as controls. Synovial fluid was collected for microbial culture and SF-WBC, SF-PNM%, and SF-NET detection. The receiver operating characteristic curve (ROC) of synovial NET, WBC, PMN%, and area under the curve (AUC) were obtained; the diagnostic efficacies of these diagnostic indexes were calculated and compared.Aims
Methods
Complex spinal deformities can cause pain, neurological symptoms and imbalance (sagittal and/or coronal), severely impairing patients’ quality of life and causing disability. Their treatment has always represented a
Type 2 diabetes mellitus (T2DM) impairs bone strength and is a significant risk factor for hip fracture, yet currently there is no reliable tool to assess this risk. Most risk stratification methods rely on bone mineral density, which is not impaired by diabetes, rendering current tests ineffective. CT-based finite element analysis (CTFEA) calculates the mechanical response of bone to load and uses the yield strain, which is reduced in T2DM patients, to measure bone strength. The purpose of this feasibility study was to examine whether CTFEA could be used to assess the hip fracture risk for T2DM patients. A retrospective cohort study was undertaken using autonomous CTFEA performed on existing abdominal or pelvic CT data comparing two groups of T2DM patients: a study group of 27 patients who had sustained a hip fracture within the year following the CT scan and a control group of 24 patients who did not have a hip fracture within one year. The main outcome of the CTFEA is a novel measure of hip bone strength termed the Hip Strength Score (HSS).Aims
Methods
The aim of this study was to present the first retrieval analysis findings of PRECICE STRYDE intermedullary nails removed from patients, providing useful information in the post-market surveillance of these recently introduced devices. We collected ten nails removed from six patients, together with patient clinical data and plain radiograph imaging. We performed macro- and microscopic analysis of all surfaces and graded the presence of corrosion using validated semiquantitative scoring methods. We determined the elemental composition of surface debris using energy dispersive x-ray spectroscopy (EDS) and used metrology analysis to characterize the surface adjacent to the extendable junctions.Aims
Methods
Patients undergoing revision surgery of a primary total hip arthroplasty often exhibit bone loss and poor bone quality, which make achieving stable fixation and osseointegration challenging. Implant components coated in porous metals are used clinically to improve mechanical stability and encourage bone in-growth. We compared ultra-porous titanium coatings, known commercially as Gription and Porocoat, in an intra-articular model by press-fitting coated cylindrical implants into ovine femoral condyles and evaluating bone in-growth and fixation strength 4, 8 and 16 weeks post-operatively. Bilateral surgery using a mini-arthrotomy approach was performed on twenty-four Dorset-Rideau Arcott rams (3.4 ± 0.8 years old, 84.8 ± 9.3 kg) with Institutional Animal Care Committee approval in accordance with the Canadian Council on Animal Care. Cylindrical implants, 6.2 mm in diameter by 10 mm in length with surface radius of curvature of 35 mm, were composed of a titanium substrate coated in either Porocoat or Gription and press-fit into 6 mm diameter recipient holes in the weight-bearing regions of the medial (MFC) and lateral (LFC) femoral condyles. Each sheep received 4 implants; two Gription in one stifle (knee) and two Porocoat in the contralateral joint. Biomechanical push-out tests (Instron ElectroPuls E10000) were performed on LFCs, where implants were pushed out relative to the condyle at a rate of 2 mm/min. Force and displacement data were used to calculate force and displacement at failure, stiffness, energy, stress, strain, elastic modulus, and
The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods.Aims
Methods
Brachial plexus injury (BPI) is an often devastating injury that affects patients physically and emotionally. The vast majority of the published literature is based on surgeon-graded assessment of motor outcomes, but the patient experience after BPI is not well understood. Our aim was to better understand overall life satisfaction after BPI, with the goal of identifying areas that can be addressed in future delivery of care. We conducted semi-structured interviews with 15 BPI patients after initial nerve reconstruction. The interview guide was focused on the patient’s experience after BPI, beginning with the injury itself and extending beyond surgical reconstruction. Inductive and deductive thematic analysis was used according to standard qualitative methodology to better understand overall life satisfaction after BPI, contributors to life satisfaction, and opportunities for improvement.Aims
Methods
The material and design of knee components can have a considerable effect on the contact characteristics of the tibial post. This study aimed to analyze the stress distribution on the tibial post when using different grades of polyethylene for the tibial inserts. In addition, the contact properties of fixed-bearing and mobile-bearing inserts were evaluated. Three different grades of polyethylene were compared in this study; conventional ultra high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (HXLPE), and vitamin E-stabilized polyethylene (VEPE). In addition, tibial baseplates with a fixed-bearing and a mobile-bearing insert were evaluated to understand differences in the contact properties. The inserts were implanted in neutral alignment and with a 10° internal malrotation. The contact stress, von Mises stress, and equivalent plastic strain (PEEQ) on the tibial posts were extracted for comparison.Aims
Methods
Inadvertent soft tissue damage caused by the oscillating saw during total knee arthroplasty (TKA) occurs when the sawblade passes beyond the bony boundaries into the soft tissue. The primary objective of this study is to assess the risk of inadvertent soft tissue damage during jig-based TKA by evaluating the excursion of the oscillating saw past the bony boundaries. The second objective is the investigation of the relation between this excursion and the surgeon’s experience level. A conventional jig-based TKA procedure with medial parapatellar approach was performed on 12 cadaveric knees by three experienced surgeons and three residents. During the proximal tibial resection, the motion of the oscillating saw with respect to the tibia was recorded. The distance of the outer point of this cutting portion to the edge of the bone was defined as the excursion of the oscillating saw. The excursion of the sawblade was evaluated in six zones containing the following structures: medial collateral ligament (MCL), posteromedial corner (PMC), iliotibial band (ITB), lateral collateral ligament (LCL), popliteus tendon (PopT), and neurovascular bundle (NVB).Aims
Methods
The processes linking long-term bisphosphonate treatment to atypical fracture remain elusive. To establish a means of exploring this link, we have examined how long-term bisphosphonate treatment with prior ovariectomy modifies femur fracture behaviour and tibia mass and shape in murine bones. Three groups (seven per group) of 12-week-old mice were: 1) ovariectomized and 20 weeks thereafter treated weekly for 24 weeks with 100 μm/kg subcutaneous ibandronate (OVX+IBN); 2) ovariectomized (OVX); or 3) sham-operated (SHAM). Quantitative fracture analysis generated biomechanical properties for the femoral neck. Tibiae were microCT scanned and trabecular (proximal metaphysis) and cortical parameters along almost its whole length measured.Aims
Methods