Advertisement for orthosearch.org.uk
Results 1 - 20 of 1715
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 790 - 792
17 Dec 2024
Mangwani J Brockett C Pegg E

Cite this article: Bone Joint Res 2024;13(12):790–792.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_20 | Pages 9 - 9
12 Dec 2024
Naik A Patel P Batta V Osmani H Gray J
Full Access

Introduction. Video recording to teach and assess both technical and non-technical skills is well-established within medical education. Trainees’ clinical and practical competencies are evaluated using Procedure-Based Assessments (PBAs). However, there is limited research describing how these PBAs truly reflect trainee performance. We sought to:. 1). assess the duration between the procedure and PBA completion. 2). assess the perceived viability of supplementing assessments using intra-operative camera footage and. 3). clarify medico-legal considerations for the use of cameras in theatre. Method. We undertook a survey of Orthopaedic trainees in the East of England Deanery, United Kingdom. A six-item questionnaire was designed and provided to trainees (paper and online) to assess the time between procedure and filling in PBA forms, level of consultant input, time to PBA sign-off and trainees’ views on current PBA methods, operative video recording and retrospective access to clinical footage. Results. The survey response rate was 75%. 60% felt current PBAs do NOT allow them to highlight their strengths and weaknesses; a higher percentage felt retrospective access to a video recording would aid reflective practice (87.5%) and completion of PBAs (70%). 49% stated they did not complete their PBAs with their Consultant. Conclusion. This paper highlights potential limitations in existing forms of trainee assessment and feedback. We suggest use of trainees’ clinical footage to evaluate skills and performance, enhance feedback & learning in PBAs which has resonated well with trainees, the intended beneficiary. We also consider the medicolegal implications of cameras in operative training, with possible limitations to their adoption in current practice


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_20 | Pages 14 - 14
12 Dec 2024
Kakwani M Pujol-Nicolas A Griffiths A Hutt N Townshend D Murty A Kakwani R
Full Access

Objectives. Minimally invasive surgery (MIS) has gained popularity for hallux valgus, compared to the traditional scarf osteotomy (OS). Though evidence suggests similar clinical outcomes, there is paucity of randomised controlled studies. This study aimed to assess the feasibility of conducting a randomised controlled trial comparing the patient recorded and clinical outcomes for the surgical management of Hallux Valgus between OS and MIS Chevron Akin (MICA). Methods. Patients suitable for surgical correction were invited to participate. Post-op rehabilitation was standardised for both groups. Patients completed a validated questionnaire (Manchester Oxford Foot questionnaire and EQ-5D-5L) pre-operatively and post-operatively at 6 months and 1 year. Radiological parameters and range of motion were measured pre-and post-operatively. Results. 31 patients were recruited between Dec 2017 and June 2022. 17 patients were randomised to MICA (15 female, mean age 51) and 15 to OS (14 female, mean age 51). Both groups had a significant improvement in all MOXFQ parameters at 6m and 12m, as well as radiological parameters. VAS improved for OS (p=0.048) and for MICA (p=0.059) at 6m. There was no significant improvement in EQ-5D in either group at 12 months and no significant difference in operative time (p=0.53). There was a higher number of complications in the MICA group with 5 removal of metalwork (29.4%) and 2 superficial infections (11.8%) versus none in the OS group. The dorsiflexion significantly improved in the OS group at 6months (p=0.04). Recruitment rate dipped during COVID. No patients were lost at follow up. Conclusion. Both surgical options show similar clinical results, but higher complication rates were seen with MICA. This study illustrates the feasibility to conduct a randomised control trial for the comparison between the two techniques. Challenges to recruitment included surgeon equipoise, patient preference, training requirement and the pandemic which could be mitigated in a larger study


Bone & Joint Research
Vol. 13, Issue 12 | Pages 716 - 724
4 Dec 2024
Cao S Chen Y Zhu Y Jiang S Yu Y Wang X Wang C Ma X

Aims

This cross-sectional study aimed to investigate the in vivo ankle kinetic alterations in patients with concomitant chronic ankle instability (CAI) and osteochondral lesion of the talus (OLT), which may offer opportunities for clinician intervention in treatment and rehabilitation.

Methods

A total of 16 subjects with CAI (eight without OLT and eight with OLT) and eight healthy subjects underwent gait analysis in a stair descent setting. Inverse dynamic analysis was applied to ground reaction forces and marker trajectories using the AnyBody Modeling System. One-dimensional statistical parametric mapping was performed to compare ankle joint reaction force and joint moment curve among groups.


Bone & Joint 360
Vol. 13, Issue 6 | Pages 45 - 47
1 Dec 2024

The December 2024 Research Roundup360 looks at: Skeletal muscle composition, power, and mitochondrial energetics in older men and women with knee osteoarthritis; Machine-learning models to predict osteonecrosis in patients with femoral neck fractures undergoing internal fixation; Aetiology of patient dissatisfaction following primary total knee arthroplasty in the era of robotic-assisted technology; Efficacy and safety of commonly used thromboprophylaxis agents following hip and knee arthroplasty; The COVID-19 effect continues; Nickel allergy in knee arthroplasty: does self-reported sensitivity affect outcomes?; Tranexamic acid use and joint infection risk in total hip and knee arthroplasty.


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1416 - 1425
1 Dec 2024
Stroobant L Jacobs E Arnout N Van Onsem S Tampere T Burssens A Witvrouw E Victor J

Aims. Approximately 10% to 20% of knee arthroplasty patients are not satisfied with the result, while a clear indication for revision surgery might not be present. Therapeutic options for these patients, who often lack adequate quadriceps strength, are limited. Therefore, the primary aim of this study was to evaluate the clinical effect of a novel rehabilitation protocol that combines low-load resistance training (LL-RT) with blood flow restriction (BFR). Methods. Between May 2022 and March 2024, we enrolled 45 dissatisfied knee arthroplasty patients who lacked any clear indication for revision to this prospective cohort study. All patients were at least six months post-surgery and had undergone conventional physiotherapy previously. The patients participated in a supervised LL-RT combined with BFR in 18 sessions. Primary assessments included the following patient-reported outcome measures (PROMs): Knee injury and Osteoarthritis Outcome Score (KOOS); Knee Society Score: satisfaction (KSSs); the EuroQol five-dimension five-level questionnaire (EQ-5D-5L); and the pain catastrophizing scale (PCS). Functionality was assessed using the six-minute walk Test (6MWT) and the 30-second chair stand test (30CST). Follow-up timepoints were at baseline, six weeks, three months, and six months after the start. Results. Six weeks of BFR with LL-RT improved all the PROMs except the sports subscale of the KOOS compared to baseline. Highest improvements after six weeks were found for quality of life (QoL) (mean 28.2 (SD 17.2) vs 19 (SD 14.7); p = 0.002), activities of daily living (mean 54.7 (SD 18.7) vs 42.9 (SD 17.3); p < 0.001), and KSSs (mean 17.1 (SD 8.8) vs 12.8 (SD 6.7); p < 0.001). PROMs improvements continued to be present at three-month and six-month follow-up compared to baseline. However, no significant differences were observed in the paired comparisons of the six-week, three-month, and six-month follow-up. The same trends are observed for the 6MWT and 30CST. Conclusion. The reported regime demonstrates improved QoL and function of dissatisfied knee arthroplasty patients. In light of this, the pathway described may provide a valuable and safe treatment option for dissatisfied knee arthroplasty patients for whom therapeutic options are limited. Cite this article: Bone Joint J 2024;106-B(12):1416–1425


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1431 - 1442
1 Dec 2024
Poutoglidou F van Groningen B McMenemy L Elliot R Marsland D

Lisfranc injuries were previously described as fracture-dislocations of the tarsometatarsal joints. With advancements in modern imaging, subtle Lisfranc injuries are now more frequently recognized, revealing that their true incidence is much higher than previously thought. Injury patterns can vary widely in severity and anatomy. Early diagnosis and treatment are essential to achieve good outcomes. The original classification systems were anatomy-based, and limited as tools for guiding treatment. The current review, using the best available evidence, instead introduces a stability-based classification system, with weightbearing radiographs and CT serving as key diagnostic tools. Stable injuries generally have good outcomes with nonoperative management, most reliably treated with immobilization and non-weightbearing for six weeks. Displaced or comminuted injuries require surgical intervention, with open reduction and internal fixation (ORIF) being the most common approach, with a consensus towards bridge plating. While ORIF generally achieves satisfactory results, its effectiveness can vary, particularly in high-energy injuries. Primary arthrodesis remains niche for the treatment of acute injuries, but may offer benefits such as lower rates of post-traumatic arthritis and hardware removal. Novel fixation techniques, including suture button fixation, aim to provide flexible stabilization, which theoretically could improve midfoot biomechanics and reduce complications. Early findings suggest promising functional outcomes, but further studies are required to validate this method compared with established techniques. Future research should focus on refining stability-based classification systems, validation of weightbearing CT, improving rehabilitation protocols, and optimizing surgical techniques for various injury patterns to ultimately enhance patient outcomes.

Cite this article: Bone Joint J 2024;106-B(12):1431–1442.


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1393 - 1398
1 Dec 2024
Morris WZ Haider S Hinds ST Podeszwa D Ellis H Osborne L Anable N Sucato D

Aims

There has been limited literature regarding outcomes of acetabular rim syndrome (ARS) with persistent acetabular os in the setting of acetabular dysplasia. The purpose of this study was to characterize a cohort of adolescent and young adult patients with ARS with persistent os and compare their radiological and clinical outcomes to patients with acetabular dysplasia without an os.

Methods

We reviewed a prospective database of patients undergoing periacetabular osteotomy (PAO) for symptomatic acetabular dysplasia between January 1999 and December 2021 to identify hips with preoperative os acetabuli, defined as a closed triradiate cartilage but persistence of a superolateral os acetabulum. A total of 14 hips in 12 patients with persistent os acetabuli (ARS cohort) were compared to 50 randomly selected ‘control’ hips without persistent os acetabuli. Preoperative and postoperative radiographs were measured for markers of dysplasia: lateral centre-edge angle, anterior centre-edge angle, acetabular inclination, and migration index. Union of the os was determined in patients with ≥ six months’ follow-up. Patient-reported outcome measures (PROMs) included the University of California, Los Angeles (UCLA) activity score and modified Harris Hip Score (mHHS, maximum score 80) completed at one year postoperatively.


Bone & Joint Research
Vol. 13, Issue 11 | Pages 673 - 681
22 Nov 2024
Yue C Xue Z Cheng Y Sun C Liu Y Xu B Guo J

Aims

Pain is the most frequent complaint associated with osteonecrosis of the femoral head (ONFH), but the factors contributing to such pain are poorly understood. This study explored diverse demographic, clinical, radiological, psychological, and neurophysiological factors for their potential contribution to pain in patients with ONFH.

Methods

This cross-sectional study was carried out according to the “STrengthening the Reporting of OBservational studies in Epidemiology” statement. Data on 19 variables were collected at a single timepoint from 250 patients with ONFH who were treated at our medical centre between July and December 2023 using validated instruments or, in the case of hip pain, a numerical rating scale. Factors associated with pain severity were identified using hierarchical multifactor linear regression.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 54 - 54
14 Nov 2024
Pann P Taheri S Schilling AF Graessel S
Full Access

Introduction. Osteoarthritis (OA) causes pain, stiffness, and loss of function due to degenerative changes in joint cartilage and bone. In some forms of OA, exercise can alleviate symptoms by improving joint mobility and stability. However, excessive training after joint injury may have negative consequences for OA development. Sensory nerve fibers in joints release neuropeptides like alpha-calcitonin gene-related peptide (alpha-CGRP), potentially affecting OA progression. This study investigates the role of alpha-CGRP in OA pathogenesis under different exercise regimen in mice. Method. OA was induced in C57Bl/6J WT mice and alpha-CGRP KO mice via surgical destabilization of the medial meniscus (DMM) at 12 weeks of age (N=6). Treadmill exercise began 2 weeks post-surgery and was performed for 30 minutes, 5 days a week, for 2 or 6 weeks at intense (16 m/min, 15° incline) or moderate (10 m/min, 5° incline) levels. Histomorphometric assessment of cartilage degradation (OARSI scoring), serum cytokine analysis, immunohistochemistry, and nanoCT analysis were conducted. Result. OARSI scoring confirmed OA induction 4 weeks post-DMM surgery, with forced exercise exacerbating cartilage degradation regardless of intensity. No significant genotype-dependent differences were observed. Serum analysis revealed elevated cytokine levels associated with OA and inflammation in KO mice compared to WT mice 4 and 8 weeks post-surgery (VEGF-A, MCP-1, CXCL10, RANTES, MIP1-alpha, MIP1-beta, and RANKL). The observed effects were often exacerbated by intense exercise but rarely by DMM surgery. NanoCT analysis demonstrated increased sclerotic bone changes after 6 weeks of forced exercise in KO mice compared to WT mice. Conclusion. Our results suggest an OA promoting effect of exercise in early disease stages of posttraumatic OA. Intense exercise induced inflammatory processes correlated to increased cytokine levels in the serum that might exacerbate OA pathogenesis in later stages. The neuropeptide alpha-CGRP might play a role in protecting against these adverse effects


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 7 - 7
14 Nov 2024
Cullen D Thompson P Johnson D Lindner C
Full Access

Introduction. Accurate assessment of alignment in pre-operative and post-operative knee radiographs is important for planning and evaluating knee replacement surgery. Existing methods predominantly rely on manual measurements using long-leg radiographs, which are time-consuming to perform and are prone to reliability errors. In this study, we propose a machine-learning-based approach to automatically measure anatomical varus/valgus alignment in pre-operative and post-operative standard AP knee radiographs. Method. We collected a training dataset of 816 pre-operative and 457 one-year post-operative AP knee radiographs of patients who underwent knee replacement surgery. Further, we have collected a separate distinct test dataset with both pre-operative and one-year post-operative radiographs for 376 patients. We manually outlined the distal femur and the proximal tibia/fibula with points to capture the knee joint (including implants in the post-operative images). This included point positions used to permit calculation of the anatomical tibiofemoral angle. We defined varus/valgus as negative/positive deviations from zero. Ground truth measurements were obtained from the manually placed points. We used the training dataset to develop a machine-learning-based automatic system to locate the point positions and derive the automatic measurements. Agreement between the automatic and manual measurements for the test dataset was assessed by intra-class correlation coefficient (ICC), mean absolute difference (MAD) and Bland-Altman analysis. Result. Analysing the agreement between the manual and automated measurements, ICC values were excellent pre-/post-operatively (0.96, CI: 0.94-0.96) / (0.95, CI: 0.95-0.96). Pre-/post-operative MAD values were 1.3°±1.4°SD / 0.7°±0.6°SD. The Bland-Altman analysis showed a pre-/post-operative mean difference (bias) of 0.3°±1.9°SD/-0.02°±0.9°SD, with pre-/post-operative 95% limits of agreement of ±3.7°/±1.8°, respectively. Conclusion. The developed machine-learning-based system demonstrates high accuracy and reliability in automatically measuring anatomical varus/valgus alignment in pre-operative and post-operative knee radiographs. It provides a promising approach for automating the measurement of anatomical alignment without the need for long-leg radiographs. Acknowledgements. This research was funded by the Wellcome Trust [223267/Z/21/Z]


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 17 - 17
14 Nov 2024
Kjærgaard K Ding M Mansourvar M
Full Access

Introduction. Experimental bone research often generates large amounts of histology and histomorphometry data, and the analysis of these data can be time-consuming and trivial. Machine learning offers a viable alternative to manual analysis for measuring e.g. bone volume versus total volume. The objective was to develop a neural network for image segmentation, and to assess the accuracy of this network when applied to ectopic bone formation samples compared to a ground truth. Method. Thirteen tissue slides totaling 114 megapixels of ectopic bone formation were selected for model building. Slides were split into training, validation, and test data, with the test data reserved and only used for the final model assessment. We developed a neural network resembling U-Net that takes 512×512 pixel tiles. To improve model robustness, images were augmented online during training. The network was trained for 3 days on a NVidia Tesla K80 provided by a free online learning platform against ground truth masks annotated by an experienced researcher. Result. During training, the validation accuracy improved and stabilised at approx. 95%. The test accuracy was 96.1 %. Conclusion. Most experiments using ectopic bone formation will yield an inter-observer or inter-method variance of far more than 5%, so the current approach may be a valid and feasible technique for automated image segmentation for large datasets. More data or a consensus-based ground truth may improve training stability and validation accuracy. The code and data of this project are available upon request and will be available online as part of our publication


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 63 - 63
14 Nov 2024
Ritter D Bachmaier S Wijdicks C Raiss P
Full Access

Introduction. The increased prevalence of osteoporosis in the patient population undergoing reverse shoulder arthroplasty (RSA) results in significantly increased complication rates. Mainly demographic and clinical predictors are currently taken into the preoperative assessment for risk stratification without quantification of preoperative computed tomography (CT) data (e.g. bone density). It was hypothesized that preoperative CT bone density measures would provide objective quantification with subsequent classification of the patients’ humeral bone quality. Methods. Thirteen bone density parameters from 345 preoperative CT scans of a clinical RSA cohort represented the data set in this study. The data set was divided into testing (30%) and training data (70%), latter included an 8-fold cross validation. Variable selection was performed by choosing the variables with the highest descriptive value for each correlation clustered variables. Machine learning models were used to improve the clustering (Hierarchical Ward) and classification (Support Vector Machine (SVM)) of bone densities at risk for complications and were compared to a conventional statistical model (Logistic Regression (LR)). Results. Clustering partitioned this cohort (training data set) into a high bone density subgroup consisting of 96 patients and a low bone density subgroup consisting of 146 patients. The optimal number of clusters (n = 2) was determined based on optimization metrics. Discrimination of the cross validated classification model showed comparable performance for the training (accuracy=91.2%; AUC=0.967) and testing data (accuracy=90.5 %; AUC=0.958) while outperforming the conventional statistical model (Logistic Regression (LR)). Local interpretable model-agnostic explanations (LIME) were created for each patient to explain how the predicted output was achieved. Conclusion. The trained and tested model provides preoperative information for surgeons treating patients with potentially poor bone quality. The use of machine learning and patient-specific calibration showed that multiple 3D bone density scores improved accuracy for objective preoperative bone quality assessment


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 45 - 45
14 Nov 2024
Kjeldsen T Thorgaard Skou S Dalgas U Tønning L Birch S Frydendal T Varnum C Garval M G Ingwersen K Mechlenburg I
Full Access

Introduction. Exercise is recommended as first-line treatment for patients with hip osteoarthritis (OA). Interestingly, content and dose of exercise interventions seem to be important for the effect of exercise interventions, but the optimal content and dose is unknown. This warrants randomized controlled trials providing evidence for the optimal exercise program in Hip OA. The aim of this trial was to investigate whether progressive resistance training (PRT) is superior to neuromuscular exercise (NEMEX) for improving functional performance, hip pain and hip-related quality of life in patients with hip OA. Method. This was a multicenter, cluster-randomized, controlled, parallel-group, assessor-blinded, superiority trial. 160 participants with clinically diagnosed hip OA were recruited from hospitals and physiotherapy clinics and randomly assigned to twelve weeks of PRT or NEMEX. The PRT intervention consisted of 5 high-intensity resistance training exercises targeting muscles at the hip and knee joints. The NEMEX intervention included 10 exercises and emphasized sensorimotor control and functional stability. The primary outcome was change in the 30-second chair stand test (30s-CST). Key secondary outcomes were changes in scores on the pain and hip-related quality of life (QoL) subscales of the Hip Disability and Osteoarthritis Outcome Score (HOOS). Result. The mean changes from baseline to 12-week follow-up in the 30s-CST were 1.5 (95% CI, 0.9 to 2.1) chair stands with PRT and 1.5 (CI, 0.9 to 2.1) chair stands with NEMEX (difference, 0.0 [CI, 0.8 to 0.8] chair stands). For the HOOS pain subscale, mean changes were 8.6 (CI, 5.3 to 11.8) points with PRT and 9.3 (CI, 5.9 to 12.6) points with NEMEX. For the HOOS QoL subscale, mean changes were 8.0 (CI, 4.3 to 11.7) points with PRT and 5.7 (CI, 1.9 to 9.5) points with NEMEX. Conclusion. In patients with hip OA, PRT is not superior to NEMEX for improving functional performance, hip pain, or hip-related QoL


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 69 - 69
14 Nov 2024
Sawant S Borotikar B Raghu V Audenaert E Khanduja V
Full Access

Introduction. Three-dimensional (3D) morphological understanding of the hip joint, specifically the joint space and surrounding anatomy, including the proximal femur and the pelvis bone, is crucial for a range of orthopedic diagnoses and surgical planning. While deep learning algorithms can provide higher accuracy for segmenting bony structures, delineating hip joint space formed by cartilage layers is often left for subjective manual evaluation. This study compared the performance of two state-of-the-art 3D deep learning architectures (3D UNET and 3D UNETR) for automated segmentation of proximal femur bone, pelvis bone, and hip joint space with single and multi-class label segmentation strategies. Method. A dataset of 56 3D CT images covering the hip joint was used for the study. Two bones and hip joint space were manually segmented for training and evaluation. Deep learning models were trained and evaluated for a single-class approach for each label (proximal femur, pelvis, and the joint space) separately, and for a multi-class approach to segment all three labels simultaneously. A consistent training configuration of hyperparameters was used across all models by implementing the AdamW optimizer and Dice Loss as the primary loss function. Dice score, Root Mean Squared Error, and Mean Absolute Error were utilized as evaluation metrics. Results. Both the models performed at excellent levels for single-label segmentations in bones (dice > 0.95), but single-label joint space performance remained considerably lower (dice < 0.87). Multi-class segmentations remained at lower performance (dice < 0.88) for both models. Combining bone and joint space labels may have introduced a class imbalance problem in multi-class models, leading to lower performance. Conclusion. It is not clear if 3D UNETR provides better performance as the selection of hyperparameters was the same across the models and was not optimized. Further evaluations will be needed with baseline UNET and nnUNET modeling architectures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 105 - 105
14 Nov 2024
Spoo S Garcia F Braun B Cabri J Grimm B
Full Access

Introduction. The objective assessment of shoulder function is important for personalized diagnosis, therapies and evidence-based practice but has been limited by specialized equipment and dedicated movement laboratories. Advances in AI-driven computer vision (CV) using consumer RGB cameras (red-blue-green) and open-source CV models offer the potential for routine clinical use. However, key concepts, evidence, and research gaps have not yet been synthesized to drive clinical translation. This scoping review aims to map related literature. Method. Following the JBI Manual for Evidence Synthesis, a scoping review was conducted on PubMed and Scholar using search terms including “shoulder,” “pose estimation,” “camera”, and others. From 146 initial results, 27 papers focusing on clinical applicability and using consumer cameras were included. Analysis employed a Grounded Theory approach guided iterative refinement. Result. Studies primarily used Microsoft Kinect (infrared-based depth sensing, RGB camera; discontinued) or monocular consumer cameras with open-source CV-models, sometimes supplemented by LiDAR (laser-based depth sensing), wearables or markers. Technical validation studies against gold standards were scarce and too inconsistent for comparison. Larger range of motion (RoM) movements were accurately recorded, but smaller movements, rotations and scapula tracking remained challenging. For instance, one larger validation study comparing shoulder angles during arm raises to a marker-based gold-standard reported Pearson's R = 0.98 and a standard error of 2.4deg. OpenPose and Mediapipe were the most used CV-models. Recent efforts try to improve model performance by training with shoulder specific movements. Conclusion. Low-cost, routine clinical movement analysis to assess shoulder function using consumer cameras and CV seems feasible. It can provide acceptable accuracy for certain movement tasks and larger RoM. Capturing small, hidden or the entirety of shoulder movement requires improvements such as via training models with shoulder specific data or using dual cameras. Technical validation studies require methodological standardization, and clinical validation against established constructs is needed for translation into practice


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 68 - 68
14 Nov 2024
Nøhr LM Simony A Abrahamsen C
Full Access

Introduction. Shared decision making (SDM) was introduced in hospital Lillebelt in 2019 and research reports that patients are more satisfied with their treatment, if they play an active role in choosing treatment. A Decision-Helper was constructed and introduced in the treatment for Colles fractures. This study aimed to understand how patients experience shared decision-making (SDM) for an acute illness, and how it affects them when making decisions about the treatment of their distal radius fracture. Method. An exploratory, qualitative study design was performed to understand the patient's experience, during the choice of treatment with SDM. 12 were recruited when they came to their first follow-up 5 days after the injury, in the outpatient clinic. 10 were interviewed; 3 face to face and 7 by telephone. All women aged 57-87 years and all had a displaced Colles fracture, which had been reduced in the Emergency Room. Result. Analyzing the interviews three themes emerged: 1) Acute situation. Patients was positive towards SDM, but found it demanding to participate in. Patients was still in crisis, 5 days after suffering from a fracture. Patients were unable to remember the information given in the ER, regarding the use of the Decision helper. Few had prepared themselves for the consult in the outpatient clinic. 2) Influence on treatment choice. It was unclear to the majority of patients, that cast or surgery, resulted in similar clinical outcomes. 3) The treatment decision was based on personal factors, more than the information received during the consult. Conclusion. Patients wants to be included in the treatment decision. It is important to highlight that booth treatments are equal in clinical outcome, before introducing the Decision-Helper. The doctor´s demeanor is of great importance to the patient's experience. Introducing SDM in the clinical setting requires training and repeated observations, to succeed


Aims

For rare cases when a tumour infiltrates into the hip joint, extra-articular resection is required to obtain a safe margin. Endoprosthetic reconstruction following tumour resection can effectively ensure local control and improve postoperative function. However, maximizing bone preservation without compromising surgical margin remains a challenge for surgeons due to the complexity of the procedure. The purpose of the current study was to report clinical outcomes of patients who underwent extra-articular resection of the hip joint using a custom-made osteotomy guide and 3D-printed endoprosthesis.

Methods

We reviewed 15 patients over a five-year period (January 2017 to December 2022) who had undergone extra-articular resection of the hip joint due to malignant tumour using a custom-made osteotomy guide and 3D-printed endoprosthesis. Each of the 15 patients had a single lesion, with six originating from the acetabulum side and nine from the proximal femur. All patients had their posterior column preserved according to the surgical plan.


Bone & Joint Research
Vol. 13, Issue 11 | Pages 647 - 658
12 Nov 2024
Li K Zhang Q

Aims

The incidence of limb fractures in patients living with HIV (PLWH) is increasing. However, due to their immunodeficiency status, the operation and rehabilitation of these patients present unique challenges. Currently, it is urgent to establish a standardized perioperative rehabilitation plan based on the concept of enhanced recovery after surgery (ERAS). This study aimed to validate the effectiveness of ERAS in the perioperative period of PLWH with limb fractures.

Methods

A total of 120 PLWH with limb fractures, between January 2015 and December 2023, were included in this study. We established a multidisciplinary team to design and implement a standardized ERAS protocol. The demographic, surgical, clinical, and follow-up information of the patients were collected and analyzed retrospectively.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1020 - 1026
11 Nov 2024
Pigeolet M Sana H Askew MR Jaswal S Ortega PF Bradley SR Shah A Mita C Corlew DS Saeed A Makasa E Agarwal-Harding KJ

Aims

Lower limb fractures are common in low- and middle-income countries (LMICs) and represent a significant burden to the existing orthopaedic surgical infrastructure. In high income country (HIC) settings, internal fixation is the standard of care due to its superior outcomes. In LMICs, external fixation is often the surgical treatment of choice due to limited supplies, cost considerations, and its perceived lower complication rate. The aim of this systematic review protocol is identifying differences in rates of infection, nonunion, and malunion of extra-articular femoral and tibial shaft fractures in LMICs treated with either internal or external fixation.

Methods

This systematic review protocol describes a broad search of multiple databases to identify eligible papers. Studies must be published after 2000, include at least five patients, patients must be aged > 16 years or treated as skeletally mature, and the paper must describe a fracture of interest and at least one of our primary outcomes of interest. We did not place restrictions on language or journal. All abstracts and full texts will be screened and extracted by two independent reviewers. Risk of bias and quality of evidence will be analyzed using standardized appraisal tools. A random-effects meta-analysis followed by a subgroup analysis will be performed, given the anticipated heterogeneity among studies, if sufficient data are available.