Advertisement for orthosearch.org.uk
Results 301 - 320 of over 10000
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 65 - 65
14 Nov 2024
Gryet I Jensen CG Pedersen AR Skov S
Full Access

Introduction

Postvoid residualurine (PVR) can be an unknown chronic disorder, but it can also occur after surgery. A pilot-study initiated in Elective Surgery Center, Silkeborg led to collaboration with a urologist to develop a flowchart regarding treatment of PVR. Depending on the severity, men with significant PVR volumes were either recommend follow up by general practitioner or referred to an urologist for further diagnose and/or treatment. Aim: to determine the prevalence of pre- and postoperative PVR in men >65 years undergoing orthopedic surgeries and associated risk factors.

Method

A single-center, prospective cohort study. Male patients were consecutively included during one year from April 2022. Data was extracted from the electronic patient files: age, lower urinary tract symptoms (LUTS), co-morbidity (e.g. diabetes), type of surgery and anesthesia, opioid use, pre- and postoperative PVR.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 41 - 41
14 Nov 2024
Soubrier A Kasper H Alini M Jonkers I Grad S
Full Access

Introduction

Intervertebral disc degeneration has been associated with low back pain (LBP) which is a major cause of long-term disability worldwide. Observed mechanical and biological modifications have been related to decreased water content.

Clinical traction protocols as part of LBP management have shown positive outcomes. However, the underlying mechanical and biological processes are still unknown.

The study purpose was to evaluate the impact of unloading through traction on the mechanobiology of healthy bovine tail discs in culture.

Method

We loaded bovine tail discs (n=3/group) 2h/day at 0.2Hz for 3 days, either in dynamic compression (-0.01MPa to -0.2MPa) or in dynamic traction (-0.01MPa to 0.024MPa). In between the dynamic loading sessions, we subjected the discs to static compression loading (-0.048MPa). We assessed biomechanical and biological parameters.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 49 - 49
14 Nov 2024
Chen YS Lian WS Lin Y Wang F
Full Access

Introduction

Promoting bone mass homeostasis keeps skeleton away from osteoporosis. a-Ketoglutarate (a-KG) is an indispensable intermediate of tricarboxylic acid cycle (TCA) process for cellular energy production. a-KG mitigates cellular senescence, tissue degeneration, and oxidative stress. We investigated whether a-KG affected osteoblast activity or osteoporosis development.

Method

Serum and bone specimens were biopsied from 26 patients with osteoporosis or 24 patients without osteoporosis who required spinal surgery. Ovariectomized or aged mice were fed 0.25% or 0.75% a-KG in drinking water for 8 – 12 weeks ad libitum. Bone mineral density, trabecular/cortical bone microarchitecture, mechanical strength, bone formation, and osteoclastic erosion were investigated using mCT, material testing device, in vivo calcein labelling, and TRAP histochemical staining. Serum a-KG, osteocalcin, and TRAP5b levels were quantified using ELISA kits. Bone-marrow mesenchymal cells and macrophages were incubated osteogenic and osteoclastogenic media. Histone H3K27me3 levels and enrichment were investigated using immunoblotting and chromatin precipitation-PCR.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 10 - 10
14 Nov 2024
Zderic I Kraus M Rossenberg LV Puls L Pastor T Gueorguiev B Richards G Pape HC Pastor T
Full Access

Introduction

The main postoperative complications in fixation of ulna shaft fractures are non-union and implant irritation using currently recommended 3.5-mm locking compression plates. An alternative approach using a combination of two smaller plates in orthogonal configuration has been proposed. The aim of this study was to compare the biomechanical properties of a single 3.5-mm locking compression plate versus double plating using one 2.5-mm and one 2.0-mm mandible plate in a human ulna shaft fracture model.

Method

Eight pairs human ulnar specimens with a standardized 10-mm fracture gap were pairwise assigned for instrumentation with either a single 3.5-mm plate placed posteriorly, or for double plating using a 2.5-mm and a 2.0-mm mandible plate placed posteriorly under the flexor muscles and laterally under the extensor muscles. All constructs were initially non-destructively biomechanically tested in axial compression, torsion, and bending, which was followed by cyclic torsional loading to failure. Interfragmentary movements were monitored by means of optical motion tracking.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 93 - 93
14 Nov 2024
Tønning L Jakobsen SS Kemp J O’Brien M Dalgas U Mechlenburg I
Full Access

Introduction

Symptomatic hip dysplasia is often treated with periacetabular osteotomy (PAO). Studies investigating the effect of PAO have primarily focused on radiographic measurements, pain-related outcomes, and hip survival whereas evidence related to sport participation is limited.

Methods

All patients in our institutional database were deemed eligible for this cohort study if they underwent PAO and had answered at least one question related to sport participation. Patients were asked if they were playing sport preoperatively, 6 months after PAO as well as 2, 5, 10, 15 and 20 years after. In addition, patients were asked if they were able to play their preferred sport, what type and at what level they were playing sport, and if surgery had improved their sport performance.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 5 - 5
14 Nov 2024
Panagiota Glynou S Musbahi O Cobb J
Full Access

Introduction

Knee arthroplasty (KA), encompassing Total Knee Replacement (TKR) and Unicompartmental Knee Replacement (UKR), is one of the most common orthopedic procedures, aimed at alleviating severe knee arthritis. Postoperative KA management, especially radiographic imaging, remains a substantial financial burden and lacks standardised protocols for its clinical utility during follow-up.

Method

In this retrospective multicentre cohort study, data were analysed from January 2014 to March 2020 for adult patients undergoing primary KA at Imperial NHS Trust. Patients were followed over a five-year period. Four machine learning models were developed to evaluate if post-operative X-ray frequency can predict revision surgery. The best-performing model was used to assess the risk of revision surgery associated with different number of X-rays.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 7 - 7
14 Nov 2024
Cullen D Thompson P Johnson D Lindner C
Full Access

Introduction

Accurate assessment of alignment in pre-operative and post-operative knee radiographs is important for planning and evaluating knee replacement surgery. Existing methods predominantly rely on manual measurements using long-leg radiographs, which are time-consuming to perform and are prone to reliability errors. In this study, we propose a machine-learning-based approach to automatically measure anatomical varus/valgus alignment in pre-operative and post-operative standard AP knee radiographs.

Method

We collected a training dataset of 816 pre-operative and 457 one-year post-operative AP knee radiographs of patients who underwent knee replacement surgery. Further, we have collected a separate distinct test dataset with both pre-operative and one-year post-operative radiographs for 376 patients. We manually outlined the distal femur and the proximal tibia/fibula with points to capture the knee joint (including implants in the post-operative images). This included point positions used to permit calculation of the anatomical tibiofemoral angle. We defined varus/valgus as negative/positive deviations from zero. Ground truth measurements were obtained from the manually placed points. We used the training dataset to develop a machine-learning-based automatic system to locate the point positions and derive the automatic measurements. Agreement between the automatic and manual measurements for the test dataset was assessed by intra-class correlation coefficient (ICC), mean absolute difference (MAD) and Bland-Altman analysis.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 12 - 12
14 Nov 2024
Vautrin A Thierrin R Wili P Voumard B Rauber C Klingler S Chapuis V Varga P Zysset P
Full Access

Introduction

Achieving an appropriate primary stability after implantation is a prerequisite for the long-term viability of a dental implant. Virtual testing of the bone-implant construct can be performed with finite element (FE) simulation to predict primary stability prior to implantation. In order to be translated to clinical practice, such FE modeling must be based on clinically available imaging methods. The aim of this study was to validate an FE model of dental implant primary stability using cone beam computed tomography (CBCT) with ex vivo mechanical testing.

Method

Three cadaveric mandibles (male donors, 87-97 years old) were scanned by CBCT. Twenty-three bone samples were extracted from the bones and conventional dental implants (Ø4.0mm, 9.5mm length) were inserted in each. The implanted specimens were tested under quasi-static bending-compression load (cf. ISO 14801).

Sample-specific homogenized FE (hFE) models were created from the CBCT images and meshed with hexahedral elements. A non-linear constitutive model with element-wise density-based material properties was used to simulate bone and the implant was considered rigid. The experimental loading conditions were replicated in the FE model and the ultimate force was evaluated.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 13 - 13
14 Nov 2024
Mischler D Kessler F Zysset P Varga P
Full Access

Introduction

Pedicle screw loosening in posterior instrumentation of thoracolumbar spine occurs up to 60% in osteoporotic patients. These complications may be alleviated using more flexible implant materials and novel designs that could be optimized with reliable computational modeling. This study aimed to develop and validate non-linear homogenized finite element (hFE) simulations to predict pedicle screw toggling.

Method

Ten cadaveric vertebral bodies (L1-L5) from two female and three male elderly donors were scanned with high-resolution peripheral quantitative computed tomography (HR-pQCT, Scanco Medical) and instrumented with pedicle screws made of carbon fiber-reinforced polyether-etherketone (CF/PEEK). Sample-specific 3D-printed guides ensured standardized instrumentation, embedding, and loading procedures. The samples were biomechanically tested to failure in a toggling setup using an electrodynamic testing machine (Acumen, MTS) applying a quasi-static cyclic testing protocol of three ramps with exponentially increasing peak (1, 2 and 4 mm) and constant valley displacements. Implant-bone kinematics were assessed with a stereographic 3D motion tracking camera system (Aramis SRX, GOM). hFE models with non-linear, homogenized bone material properties including a strain-based damage criterion were developed based on intact HR-pQCT and instrumented 3D C-arm scans. The experimental loading conditions were imposed, the maximum load per cycle was calculated and compared to the experimental results. HR-pQCT-based bone volume fraction (BV/TV) around the screws was correlated with the experimental peak forces at each displacement level.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 24 - 24
14 Nov 2024
Petersen ET Linde KN Burvil CCH Rytter S Koppens D Dalsgaard J Hansen TB Stilling M
Full Access

Introduction

Knee osteoarthritis often causes malalignment and altering bone load. This malalignment is corrected during total knee arthroplasty surgery, balancing the ligaments. Nonetheless, preoperative gait patterns may influence postoperative prosthesis load and bone support. Thus, the purpose is to investigate the impact of preoperative gait patterns on postoperative femoral and tibial component migration in total knee arthroplasty.

Method

In a prospective cohort study, 66 patients with primary knee osteoarthritis undergoing cemented Persona total knee arthroplasty were assessed. Preoperative knee kinematics was analyzed through dynamic radiostereometry and motion capture, categorizing patients into four homogeneous gait patterns. The four subgroups were labeled as the flexion group (n=20), the abduction (valgus) group (n=17), the anterior drawer group (n=10), and the tibial external rotation group (n=19). The femoral and tibial component migration was measured using static radiostereometry taken supine on the postoperative day (baseline) and 3-, 12-, and 24- months after surgery. Migration was evaluated as maximum total point motion.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 83 - 83
14 Nov 2024
Llucia A Espinosa SC
Full Access

Introduction

Tendon ruptures represent one of the most common acute tendon injuries in adults worldwide, affecting millions of people anually and becoming more prevalent due to longer life expectancies and sports activities. Current clinical treatments for full tears are unable to completely restore the torn tendons to their native composition, structure and mechanical properties.

To address this clinical challenge, tissue-engineered substitutes will be developed to serve as functional replacements for total tendon ruptures that closely resemble the original tissue, restoring functionality.

Method

Water borne polyurethanes (WBPU) containing acrylate groups, specifically polyethylene glycol methacrylate (PEGMA) or 2-hydroxyethyl methacrylate (HEMA), were combined with mouse mesenchymal stem cells (MoMSCs) and heparin sodium to formulate bioinks for the fabrication of scaffolds via extrusion-based 3D bioprinting.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 110 - 110
14 Nov 2024
Vettese J Julie M Evrard R Fieve L Lengelé B Cornu O
Full Access

Introduction

In tissue engineering, the establishment of sufficient vascularization is essential for tissue viability and functionality. Inadequate vascularization disrupts nutrients and oxygen supply. Nonetheless, regenerating intricate vascular networks represents a significant challenge. Consequently, research efforts devoted to preserving and regenerating functional vascular networks in engineered tissues are of paramount importance. The present work aims to validate a decellularisation process with preservation of the vascular network and extracellular matrix (ECM) components in fasciocutaneous flaps.

Method

Five vascularized fasciocutaneous flaps from cadaveric donors were carefully harvested from the anterolateral thigh (ALT), preserving the main perforator of the fascia lata. The entire ALT flap underwent decellularization by perfusion using a clinically validated chemical protocol. Fluoroscopy and computed tomography (CT) were used to analyze the persistence of the vascular network within the flap, pre- and post-decellularization. Histological analysis, including hematoxylin and eosin staining, and quantitative DNA assessment evaluated decellularization efficacy. Further qualitative (immunohistochemistry, IHC) and quantitative analyses were conducted to assess the preservation of ECM components, such as collagen, glycosaminoglycans, and elastin.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 43 - 43
14 Nov 2024
Malakoutikhah H Madenci E Latt D
Full Access

Introduction

The arch of the foot has been described as a truss where the plantar fascia (PF) acts as the tensile element. Its role in maintaining the arch has likely been underestimated because it only rarely torn in patients with progressive collapsing foot deformity (PCFD). We hypothesized that elongation of the plantar fascia would be a necessary and sufficient precursor of arch collapse.

Method

We used a validated finite element model of the foot reconstructed from CT scan of a female cadaver. Isolated and combined simulated ligament transection models were created for each combination of the ligaments. A collapsed foot model was created by simulated transection of all the arch supporting ligaments and unloading of the posterior tibial tendon. Foot alignment angles, changes in force and displacement within each of the ligaments were compared between the intact, isolated ligament transection, and complete collapse conditions.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 44 - 44
14 Nov 2024
Sohn R Assar T Kaufhold I Brenneis M Braun S Junker M Zaucke F Pongratz G Jenei-Lanzl Z
Full Access

Introduction

Recent studies suggested that the progression of osteoarthritis (OA), a chronic degenerative joint disease, may be affected by the autonomic nervous system (ANS). Under healthy conditions, the sympathetic (SNS) and parasympathetic (PNS) branches of the ANS are well coordinated to maintain homeostasis. However, pathological conditions are frequently associated with a disturbance of this fine-tuned balance. Therefore, we analyzed whether an autonomic dysfunction occurs in OA patients.

Method

225 participants with early- or late-stage knee OA as well as 40 healthy age-matched probands were included in this study. Autonomic activity was investigated by analyzing heart rate variability (HRV), which decreases under chronic sympathetic overactivity. Time- and frequency-domain HRV indices SDRR, RMSSD, pRR50 and LF were examined. Linear regression analysis was performed to adjust for clinical characteristics, such as age, sex, BMI, or medication. Moreover, perceived chronic stress (PSQ) and pain (WOMAC) were assessed via questionnaires. In addition, the serum stress hormones cortisol, DHEA-S and IL-6 were analyzed via ELISA.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 45 - 45
14 Nov 2024
Kjeldsen T Thorgaard Skou S Dalgas U Tønning L Birch S Frydendal T Varnum C Garval M G Ingwersen K Mechlenburg I
Full Access

Introduction

Exercise is recommended as first-line treatment for patients with hip osteoarthritis (OA). Interestingly, content and dose of exercise interventions seem to be important for the effect of exercise interventions, but the optimal content and dose is unknown. This warrants randomized controlled trials providing evidence for the optimal exercise program in Hip OA. The aim of this trial was to investigate whether progressive resistance training (PRT) is superior to neuromuscular exercise (NEMEX) for improving functional performance, hip pain and hip-related quality of life in patients with hip OA.

Method

This was a multicenter, cluster-randomized, controlled, parallel-group, assessor-blinded, superiority trial. 160 participants with clinically diagnosed hip OA were recruited from hospitals and physiotherapy clinics and randomly assigned to twelve weeks of PRT or NEMEX. The PRT intervention consisted of 5 high-intensity resistance training exercises targeting muscles at the hip and knee joints. The NEMEX intervention included 10 exercises and emphasized sensorimotor control and functional stability. The primary outcome was change in the 30-second chair stand test (30s-CST). Key secondary outcomes were changes in scores on the pain and hip-related quality of life (QoL) subscales of the Hip Disability and Osteoarthritis Outcome Score (HOOS).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 46 - 46
14 Nov 2024
Teixeira SPB Pardo A Taboada P Wolleb M Snedeker J Reis RL Gomes MME Domingues RMA
Full Access

Introduction

PIEZO mechanoreceptors are increasingly recognized to play critical roles in fundamental physiological processes like proprioception, touch, or tendon biomechanics. However, their gating mechanisms and downstream signaling are still not completely understood, mainly due to the lack of effective tools to probe these processes. Here, we developed new tailor-made nanoswitches enabling wireless targeted actuation on PIEZO1 by combining molecular imprinting concepts with magnetic systems.

Method

Two epitopes from functionally relevant domains of PIEZO1 were rationally selected in silico and used as templates for synthesizing molecularly imprinted nanoparticles (MINPs). Highly-responsive superparamagnetic zinc-doped iron oxide nanoparticles were incorporated into MINPs to grant them magnetic responsiveness. Endothelial cells (ECs) and adipose tissue-derived stem cells (ASCs) incubated with each type of MINP were cultured under or without the application of cyclical magnetomechanical stimulation. Downstream effects of PIEZO1 actuation on cell mechanotransduction signaling and stem cell fate were screened by analyzing gene expression profiles.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 52 - 52
14 Nov 2024
Lund M Shayestehpour H
Full Access

Introduction

This research aims to enhance the control of intricate musculoskeletal spine models, a critical tool for comprehending both healthy and pathological spinal conditions. State-of-the-art musculoskeletal spine models incorporate segments for all vertebra, each possessing 3 degrees-of-freedom (DOF). Manually defining the posture with this amount of DOFs presents a significant challenge. The prevalent method of equally distributing the spine's overall rotation among the vertebrae often proves to be an inadequate assumption, particularly when dealing with the entire spine.

Method

We have engineered a comprehensive non-linear spine rhythm and the requisite tools for its implementation in widely utilized musculoskeletal modelling software (1). The rhythm controls lateral bending, axial rotation, and flexion/extension. The mathematical and implementation details of the rhythm are beyond this abstract, but it's noteworthy that the implementation accommodates non-linear rhythms. This means, for example, that one set of rhythm coefficients is used for flexion and another for extension. The rhythm coefficients, which distinguish the movement along the spine, were derived from a review of spine literature. The values for spine and vertebra range-of-motion (ROM) vary significantly in published studies, and no complete dataset was found in any single study. Consequently, the rhythm presented here is a composite, designed to provide the most consistent and average set of rhythm coefficients.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 63 - 63
14 Nov 2024
Ritter D Bachmaier S Wijdicks C Raiss P
Full Access

Introduction

The increased prevalence of osteoporosis in the patient population undergoing reverse shoulder arthroplasty (RSA) results in significantly increased complication rates. Mainly demographic and clinical predictors are currently taken into the preoperative assessment for risk stratification without quantification of preoperative computed tomography (CT) data (e.g. bone density). It was hypothesized that preoperative CT bone density measures would provide objective quantification with subsequent classification of the patients’ humeral bone quality.

Methods

Thirteen bone density parameters from 345 preoperative CT scans of a clinical RSA cohort represented the data set in this study. The data set was divided into testing (30%) and training data (70%), latter included an 8-fold cross validation. Variable selection was performed by choosing the variables with the highest descriptive value for each correlation clustered variables. Machine learning models were used to improve the clustering (Hierarchical Ward) and classification (Support Vector Machine (SVM)) of bone densities at risk for complications and were compared to a conventional statistical model (Logistic Regression (LR)).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 64 - 64
14 Nov 2024
Hudson P Federer S Dunne M Pring C Smith N
Full Access

Introduction

Weight is a modifiable risk factor for osteoarthritis (OA) progression. Despite the emphasis on weight loss, data quantifying the changes seen in joint biomechanics are limited. Bariatric surgery patients experience rapid weight loss. This provides a suitable population to study changes in joint forces and function as weight changes.

Method

10 female patients undergoing gastric bypass or sleeve gastrectomy completed 3D walking gait analysis at a self-selected pace, pre- and 6 months post-surgery. Lower limb and torso kinematic data for 10 walking trials were collected using a Vicon motion capture system and kinetics using a Kistler force plate. An inverse kinematic model in Visual 3D allowed for no translation of the hip joint centre. 6 degrees of freedom were allowed at other joints. Data were analysed using JASP with a paired samples t-test.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 66 - 66
14 Nov 2024
Tirta M Hjorth MH Jepsen JF Kold S Rahbek O
Full Access

Introduction

Epiphysiodesis, defined as the process of closing the growth plate (physis), have been used for several years as a treatment option of cases where the predicted leg-length discrepancy (LLD) falls between 2 to 5 cm. The aim of this study was to systematically review the existing literature on the effectiveness of three different epiphysiodesis techniques with implant usage for the treatment of leg-length discrepancy in the pediatric population. The secondary aim was to address the reported complications of staples, tension-band plates (TBP) and percutaneous epiphysiodesis screws (PETS).

Method

This systematic review was performed according to PRISMA guidelines. We searched MEDLINE (PubMed), Embase, Cochrane Library, Web of Science and Scopus for studies on skeletally immature patients with LLD treated with epiphysiodesis with an implant. The extracted outcome categories were effectiveness of epiphysiodesis (LLD measurements pre/post-operatively, successful/unsuccessful) and complications that were graded on severity.