Introduction. In the evaluation of patients with pre-arthritic hip disorders, making the correct diagnosis and identifying the underlying bone pathology is of upmost importance to achieve optimal patient outcomes. 3-dimensional imaging adds information for proper preoperative planning. CT scans have become the gold standard for this, but with the associated risk of radiation exposure to this generally younger patient cohort. Purpose. To determine if 3D-MR reconstructions of the hip can be used to accurately demonstrate femoral and acetabular morphology in the setting of femoroacetabular impingement (FAI) and development dysplasia of the hip (DDH) that is comparable to CT imaging. Materials and Methods. We performed a retrospective review of 14 consecutive patients with a diagnosis of FAI or DDH that underwent both CT and MRI scans of the same hip with 3D reconstructions. 2 fellowship trained musculoskeletal radiologists reviewed all scans, and a fellowship trained hip preservation surgeon separately reviewed scans for relevant surgical parameters. All were blinded to the patients' clinical history. The 3D reconstructions were evaluated by radiologists for the presence of a CAM lesion and acetabular retroversion, while the hip preservation surgeon also evaluated CAM extent using a clock face convention of a right hip, location of femoral head blood supply, and morphological anterior inferior iliac spine (AIIS) variant. The findings on the 3D CT reconstructions were considered the reference standard. Results. Of 14 patients, there were 9 females and 5 males with a mean age 32 (range 15–42). There was no difference in the ability of MRI to detect the presence of a CAM lesion (100% agreement between 3D-MR and 3D-CT, p=1), AIIS morphology (p=1, mode=type 1 variant), or acetabular retroversion (85.7%, p=0.5). 3D-MR had a sensitivity and specificity of 100 in detecting a CAM lesion relative to 3D-CT. Four CT studies were inadequate to adequately evaluate for presence of a CAM. Five CT studies were inadequate to evaluate for location of the femoral head vessels, while MRI was able to determine location in those patients. In the 10 remaining patients for presence of CAM, and nine patients for femoral head vessel location, there was no statistically significant difference between 3D-MR and 3D-CT in determining the location of CAM lesion on a clock face (p=0.8, mean MRI = 12:54, mean CT: 12:51, SD = 66 mins MR, 81 mins CT) or in determining vessel location (p=0.4, MR mean 11:23, CT mean 11:36, SD 33 mins for both). Conclusion.
Kinematics analyses of the spine have been recognized as an effective method for functional analysis of the spine. CT is suitable for obtaining bony geometry of the vertebrae but radiation is a clinical concern. MRI is noninvasive but it is difficult to detect bone edges especially at endplates and processes where soft tissues attach. Kinematics analyses require tracking of solid bodies; therefore, bony geometry is not always necessary for kinematics analysis of the spine. This study aimed to develop a reliable and robust method for kinematics analysis of the spine using an innovative MRI-based 3D bone-marrow model. This IRB-approved study recruited 17 patients undergoing lumbar decompression surgery to treat a single-level symptomatic herniation as part of a clinical trial for a new dynamic stabilization device. T1 & T2 sagittal MRI scans were acquired as part of the pre-operative evaluation in three positions: supine and with the shoulders rotated 45° to the left and right to induce torsion of the lumbar spine. 3D bone-marrow models of L5 and S1 at the neutral and rotated positions were created by selecting a threshold level of the bone-marrow intensity at bone-marrow/bone interface. Validated 3D-3D registration techniques were used to track movements of L5 and S1. Segmental movements at L5/S1 during torsion were calculated.Introduction
Materials and Methods
Computer-assisted surgery (CAS) is a tool developed to allow accurate limb and implant alignment in total knee arthroplasty [TKA]. The strength of the technology is that it allows the surgeon to assess soft tissue balance and ligament laxity in flexion and extension. The accuracy of this ligament balancing technology depends upon an accurate determination of femoral component size. This size is established with intraoperative surface registration techniques. Customised instrumentation (CI) is a measured resection technique in which component size is established on preoperative
Introduction. Computer-assisted surgery (CAS) is a tool developed to allow accurate limb and implant alignment in TKA. The strength of the technology is that it allows the surgeon to assess soft tissue balance and ligament laxity in flexion and extension. The accuracy of this ligament balancing technology depends upon an accurate determination of femoral component size. This size is established with intraoperative surface registration techniques. Customized instrumentation (CI) is a measured resection technique in which component size is established on preoperative