Open reduction and internal fixation of acetabular fractures demands detailed preoperative planning, and given their frequent complexity, a thorough understanding of their three-dimensional (3D) form is necessary. This study aims to assess if the use of dynamic 3D models will improve preoperative planning of acetabular fractures. In this study, three experienced pelvic trauma surgeons were provided with computer based dynamic 3D models in addition to preoperative radiographs, CT scans and static
Anterior shoulder instability is associated with osseous defects of the glenoid and/or humeral head (Hill-Sachs lesions). These defects can contribute to the pathology of instability by engaging together. There is a need to continue to develop methods to preoperatively identify engaging Hill-Sachs lesions for determining appropriate surgical management. The objective was to created a working moveable 3D CT model that allows the user to move the shoulder joint into various positions to assess the relationship between the Hill-Sachs lesion and the anterior glenoid rim. This technique was applied to a cohort series of 14 patients with recurrent anterior dislocation: 4 patients had undergone osteoarticular allografting of Hill-Sachs lesions and 10 control patients had undergone CT scanning to quantify bone loss but had no treatment to address bony pathology. A biomechanical analysis was performed to rotate each 3D model using local coordinate systems through a functional range using an open-source 3D animation program, Blender (Amsterdam, Netherlands). A Hill-Sachs lesion was considered “dynamically” engaging if the angle between the lesion's long axis and anterior glenoid was parallel. In the classical vulnerable position of the shoulder (abduction=90, external rotation=0–135), none of the Hill-Sachs lesions aligned with the anterior glenoid in any of our patients (Figure 1). Therefore, we considered there to be a “low risk” of engagement in these critical positions, as the non-parallel orientation represents a lack of true articular arc mismatch and is unlikely to produce joint instability. We then expanded our search and simulated shoulder positions throughout a physiological range of motion for all groups and found that 100% of the allograft patients and 70% of the controls had positions producing alignment and were “high risk” of engagement (p = 0.18) (Table 1). We also found that the allograft group had a greater number of positions that would engage (mean 4 ± 1 positions of engagement) compared to our controls (mean 2 ± 2 positions of engagement, p = 0.06). We developed a 3D animated paradigm to dynamically and non-invasively visualize a patient's anatomy and determine the clinical significance of a Hill-Sachs lesion using open source software and CT images. The technique demonstrated in this series of patients showed multiple shoulder positions that align the Hill-Sachs and glenoid axes that do not necessarily meet the traditional definition of engagement. Identifying all shoulder positions at risk of “engaging”, in a broader physiological range, may have critical implications towards selecting the appropriate surgical management of bony defects. We do not claim to doubt the classic conceptual definition of engagement, but we merely introduce a technique that accounts for the dynamic component of shoulder motion, and in doing so, avoid limitations of a static criteria assumed traditional definition (like size and location of lesion). Further investigations are planned and will help to further validate the clinical utility of this method. For any figures or tables, please contact the authors directly.
In clinical routine surgeons depend largely on 2D x-ray radiographs and their experience to plan and evaluate surgical interventions around the knee joint. Numerous studies have shown that pure 2D x-ray radiography based measurements are not accurate due to the error in determining accurate radiography magnification and the projection characteristics of 2D radiographs. Using 2D x-ray radiographs to plan 3D knee joint surgery may lead to component misalignment in Total Knee Arthroplasty (TKA) or to over- or under-correction of the mechanical axis in Lower Extremity Osteotomy (LEO). Recently we developed a personalized X-ray reconstruction-based planning and post-operative treatment evaluation system called “iLeg” for TKA or LEO. Based on a patented X-ray image calibration cage and a unique 2D–3D reconstruction technique, iLeg can generate accurate patient-specific 3D models of a complete lower extremity from two standing X-rays for true 3D planning and evaluation of surgical interventions at the knee joint. The goal of this study is to validate the accuracy of this newly developed system using digitally reconstructed radiographs (DRRs) generated from CT data of cadavers. CT data of 12 cadavers (24 legs) were used in the study. For each leg, two DRRs, one from the antero-posterior (AP) direction and the other from the later-medial (LM) direction, were generated following clinical requirements and used as the input to the iLeg software. The 2D–3D reconstruction was then done by non-rigidly matching statistical shape models (SSMs) of both femur and tibia to the DRRs (seee Fig. 1). In order to evaluate the 2D–3D reconstruction accuracy, we conducted a semi-automatic segmentation of all CT data using the commercial software Amira (FEI Corporate, Oregon, USA). The reconstructed surface models of each leg were then compared with the surface models segmented from the associated CT data. Since the DRRs were generated from the associated CT data, the surface models were reconstructed in the local coordinate system of the CT data. Thus, we can directly compare the reconstructed surface models with the surface models segmented from the associated CT data, which we took as the ground truth. Again, we used the software Amira to compute distances from each vertex on the reconstructed surface models to the associated ground truth models.Introduction
Methods
Recently we developed a personalised X-ray reconstruction-based planning and post-operative treatment evaluation system called iLeg for total knee arthroplasty or lower extremity osteotomy. Based on a patented X-ray image calibration cage and a unique 2D-3D reconstruction technique, iLeg can generate accurate patient-specific 3D models of a complete lower extremity from two standing X-rays for true 3D planning and evaluation of surgical interventions at the knee joint. The goal of this study is to validate the accuracy of this newly developed system using digitally reconstructed radiographs (DRRs) generated from CT data of 12 cadavers (24 legs). Our experimental results demonstrated an overall reconstruction accuracy of 1.3±0.2mm.
Accurate reconstruction of the knee pose from two X-Ray images will allow the study pre-operative kinematics (for custom prosthesis design) and the post-operative evaluation of the intervention. We used a SSM of the distal femur, based on 24 MRI datasets, from which the mean model and its modes of variation were defined. On the SSM, N landmarks in predefined positions were defined. The user identifies the same landmarks on two X-ray projections. Back-projecting the X-ray from the identified landmarks pixel to the corresponding source, each landmark position in the 3D space is reconstructed and the mean model pose initialised with a corresponding points registration. The silhouette of the SSM is projected on each X-ray image, which is automatically segmented in order to define the bone contours. With a Robust Point Matching algorithm based on Thin Plate Splines the projected silhouette points are deformed to better approximate the contour. For each contour point, the associated silhouette point is computed. We back-projected the ray from each contour point to the source and find on each ray the point with minimum distance to the silhouette. The cost function is the squared sum of the distances for both images. After a first optimisation of the pose, we perform a shape optimisation to find the correct weights for the SSM. To evaluate our algorithm, we used two Digitally Reconstructed Radiographs (DRR) created as projections at 90° from a CT dataset. The CT based model was reconstructed and the landmarks were defined on it with a rigid registration of the SSM. In order to validate the robustness of our reconstruction method, a random uniform noise distribution (0–50 mm on each direction) was added on each landmark. The reconstruction accuracy was measured as the distance between each reconstructed landmark and the ground truth defined on the CT. Results show that the population of the errors for the noise levels from 0 to 30 is similar: only the population with 50 mm noise is significantly different from the results obtained with other noise levels. We can conclude that with a noise level below 50 mm the algorithm is able to return the correct pose of the femur, while with higher noise the initial distribution of the landmarks in the 3D space prevents the correct outcome of the algorithm. The user should select the landmarks within a range of 50 mm on the 3D representation, that is half the dimension of the bounding box containing the model. We can assume that in the real case it will be more difficult to select the proper position of the landmarks, but our method proved to be robust even with misplaced landmarks.
Introduction. Stand to sit pelvis kinematics is commonly considered as a rotation around the bicoxofemoral axis. However, abnormal kinematics could occur for patients with musculoskeletal disorders affecting the hip-spine complex. The aim of this study is to perform a quantitative analysis of the stand to sit pelvis kinematics using
INTRODUCTION. To assess and compare the effect of new orthopedic surgical procedures, in vitro evaluation remains critical during the pre-clinical validation. Focusing on reconstruction surgery, the ability to restore normal kinematics and stability is thereby of primary importance. Therefore, several simulators have been developed to study the kinematics and create controlled boundary conditions. To simultaneously capture the kinematics in six degrees of freedom as outlined by Grood & Suntay, markers are often rigidly connected to the moving bone segments. The position of these markers can subsequently be tracked while their position relative to the bones is determined using computed tomography (CT) of the test specimen with the markers attached. Although this method serves as golden standard, it clearly lacks real-time feedback. Therefore, this paper presents the validation of a newly developed real-time framework to assess knee kinematics at the time of testing. MATERIALS & METHODS. A total of five cadaveric fresh frozen lower limb specimens have been used to quantitatively assess the difference between the golden standard, CT based, method and the newly developed real-time method. A schematic of the data flow for both methods. Prior to testing, both methods require a CT scan of the full lower limb. During the tests, the proximal femur and distal tibia are necessarily resected to fit the knees in the test setup, thus also removing the anatomical landmarks needed to evaluate their mechanical axis. Subsequently, a set of three passive markers are rigidly attached to the femur and tibia, referred to as M3F and M3T respectively. For the CT based method, the marker positions are captured during the tests and a second CT scan is eventually performed to link the marker positions to the knee anatomy. Using in-house developed software, this allowed to offline evaluate the knee kinematics in six degrees of freedom by combining both CT datasets with the tracked marker positions. For the newly developed real-time method, a calibration procedure is first performed. This calibration aims to link the position of the 3D reconstructed bone and landmarks with the attached markers. A set of bone surface points is therefore registered. These surface points are obtained by tracking the position of a pen while touching the bone surface. The pen's position is thereby tracked by three rigidly attached markers, denoted M3P. The position of the pen tip is subsequently calculated from the known pen geometry. The iterative closest point (ICP) algorithm is then used to match the 3D reconstructed bone to the registered surface points. Two types of
Introduction. In the evaluation of patients with pre-arthritic hip disorders, making the correct diagnosis and identifying the underlying bone pathology is of upmost importance to achieve optimal patient outcomes. 3-dimensional imaging adds information for proper preoperative planning. CT scans have become the gold standard for this, but with the associated risk of radiation exposure to this generally younger patient cohort. Purpose. To determine if 3D-MR reconstructions of the hip can be used to accurately demonstrate femoral and acetabular morphology in the setting of femoroacetabular impingement (FAI) and development dysplasia of the hip (DDH) that is comparable to CT imaging. Materials and Methods. We performed a retrospective review of 14 consecutive patients with a diagnosis of FAI or DDH that underwent both CT and MRI scans of the same hip with
Custom 3D printed implants can be anatomically designed to assist in complex surgery of the bony pelvis in both orthopaedic oncology and orthopaedic reconstruction surgery. This series includes patients who had major pelvic bone loss after initially presenting with tumours, fractures or infection after previous total hip arthroplasty. The extent of the bone loss in the pelvis was severe and therefore impossible to be reconstructed by conventional ‘off –the-shelve’ implants. The implant was designed considering the remaining bony structures of the contra-lateral hemi- pelvis, to provide an anatomical, secured support for the reconstructed hip joint. The latter was realised by strategically orientated screws and by porous structures (an integral part of the implant), which stimulates osseointegration. A custom pelvic implant was designed, manufactured and
Introduction. Optimal implant position is critical to hip stability after total hip arthroplasty (THA). Recent literature points out the importance of the evaluation of pelvic position to optimize cup implantation. The concept of Functional Combined Anteversion (FCA), the sum of acetabular/cup anteversion and femoral/stem neck anteversion in the horizontal plane, can be used to plan and control the setting of a THA in standing position. The main purpose of this preliminary study is to evaluate the difference between the combined anteversion before and after THA in weight-bearing standing position using EOS
Accurate and reproducible measurement of three-dimensional shoulder kinematics would contribute to better understanding shoulder mechanics, and therefore to better diagnosing and treating shoulder pathologies. Current techniques of 3D kinematics analysis use external markers (acromial cluster or scapula locator) or medical imaging (MRI or CT-Scan). However those methods present some drawbacks such as skin movements for external markers or cost and irradiation for imaging techniques. The EOS low dose biplanar X-Rays system can be used to track the scapula, humerus and thorax for different arm elevation positions. The aim of this study is to propose a novel method to study scapulo-thoracic kinematics from biplanar X-rays and to assess its reliability during abduction in the scapular plane. This study is based on the EOS™ system (EOS Imaging, Paris, France), which allows acquisition of 2 calibrated, low dose, orthogonal radiographs with the subject standing at 30 to 40° angle of coronal rotation to the plane of one of the X-ray beams, in order to limit superimposition with the ribcage and spine. Seven abduction positions in the scapular plane were maintained by the subjects for 10 seconds, during X-ray acquisition. Between two positions, the subjects returned at rest position. Arm elevations were approximately 0, 10, 20, 30, 60, 90 and 150° (position 1 to 7). Six subjects were enrolled to perform a reproducibility study based on the
The use of 3D imaging methodologies in orthopaedics has allowed the introduction of new technologies, such as the design of patient-specific implants or surgical instrumentation. This has introduced the need for high accuracy, in addition to a correct diagnosis. Until recently, little was known about the accuracy of MR imaging to reconstruct 3D models of the skeletal anatomy. This study was conducted to quantify the accuracy of MRI-based segmentation of the knee joint. Nine knees of unfixed human cadavers were used to compare the accuracy of MR imaging to an optical scan. MR images of the specimens were obtained with a 1.5T clinical MRI scanner (GE Signa HDxt), using a slice thickness of 2 mm and a pixel size of 0.39 mm × 0.39 mm. Manual segmentation of the images was done using Mimics® (Materialise NV, Leuven, Belgium). The specimens were cleaned using an acetone treatment to remove soft-tissue but to keep the cartilage intact. The cleaned bones were optically scanned using a white-light optical scanner (ATOS II by GOM mbH, Braunschweig, Germany) having a resolution of 1.2 million pixels per measuring volume, yielding an accuracy of 0.02 mm. The optical scan of each bone reflects the actual dimensions of the bone and is considered as a ground truth measurement. First, a registration of the optical scan and the MRI-based
Introduction. Debate over appropriate alignment in total knee arthroplasty has become a topical subject as technology allows planned alignments that differ from a neutral mechanical axis. These surgical techniques employ patient-specific cutting blocks derived from
This study addresses a crucial gap in the knowledge of normative spinal growth in children. The objective of this study is to provide detailed and accurate 3D reference values for global and segmental spinal dimensions in healthy children under the age of 11. Radiographic spine examinations of healthy children conducted to rule out scoliosis were reviewed in four scoliosis referral centers in North America. All consecutive children aged three to eleven years old with EOS biplanar good quality x-rays, but without diagnosed growth-affecting pathologies, were included. Postero-Anterior and Lateral calibrated x-rays were used for spine
Background. Paediatric pelvic corrective surgery for developmentally dysplastic hips requires that the acetabular roof is angulated to improve stability and reduce morbidity. Accurate bony positioning is vital in a weight-bearing joint as is appropriate placement of metalwork without intrusion into the joint. This can often be difficult to visualise using conventional image intensifier equipment in a 2D plane. Methods. The ARCADIS Orbic 3D image intensifier produces CT-quality multi-axial images which can be manipulated intra-operatively to give immediate feedback of positioning of internal fixation. The reported radiation dose is 1/5 and 1/30 of a standard spiral CT in high and low quality modes, respectively. Results. We present 15 elective cases of paediatric pelvic osteotomy and fixation of SUFE, with use of the ARCADIS Orbic 3D image intensifier. Images were taken intra-operatively in order to confirm satisfactory fracture reduction and appropriate positioning of fixation devices avoiding joint spaces. This was achieved by
Introduction. Surgical techniques for implant alignment in total knee arthroplasty (TKA) is a expanding field as manufacturers introduce patient-specific cutting blocks derived from
Introduction. Although weight-bearing CT of the foot definitely reflects the morphology and deformity of joint, it is hard to obtain the standing CT due to difficulty of availability. Although
Introduction:. Successful total joint arthroplasty requires accruate and reproducible acetabular component position. Acetabular component malposition has been associated with complications inlcuding dislocation, implant loosening, and increased wear. Recent literature had demonstrated that high-volume fellowship trained arthroplasty surgeons are in the “safe zone” for cup inclination and anteversion only 47% of the time. (1) Computer navigation has improved accuracy and reproducibility but remains expensive and cumbersome to many hospital and physicians. Patient specific instrumentation (PSI) has been shown to be effective and efficient in total knee replacements. The purpose of this study was to determine in a cadaveric model the anteversion and inclination accuracy of acetabular guides compared to a pre-operitive plan. Methods:. 8 fresh-frozen cadaveric pelvis specimens underwent Computer Tomography (CT) in order to create a
Aim. Staphylococcus aureus (SA) chronic bone and joint infections (BJI) are characterized by a progressive destruction of bone tissue associated to SA persistence which results in a large number of relapses (10–20%). The main factors proposed for these failures are: i) a weak diffusion of antibiotics in bone tissue, ii) formation of biofilm, iii) the bacterial internalization by the cells responsible for bone mineralization, namely the osteoblasts (OB). Our in vitro and in vivo work aimed at providing new information on the impact of SA, more specifically of internalized SA, on bone homeostasis. Method. Effect of SA infection (8325–4/FnBP+; DU5883/FnBP-) on the viability, differentiation and mineralization of an OB cell line was measured in vitro by MTT and Phosphatase Alcaline (PAL) activity assays and quantification of calcium deposits using Alizarin red, respectively. A gentamicin protection assay (GPA) confirmed that the effects observed are due solely to the internalized SA. In vivo, X-ray microtomography (μCT) and
Introduction. At present, orthopaedic surgeons utilize either CT, MRI or X-ray for imaging a joint. Unfortunately, CT and MRI are quite expensive, non weight-bearing and the orthopaedic surgeon does not receive revenue for these procedures. Although x-rays are cheaper, similar to CT scans, patients incur radiation. Also, all three of these imaging modalities are static. More recently, a new ultrasound technology has been developed that will allow a surgeon to image their patients in 3D. The objective of this study is to highlight the new opportunity for orthopaedic surgeons to use 3D ultrasound as alternative to CT, MRI and X-rays. Methods. The