Advertisement for orthosearch.org.uk
Results 1 - 20 of 49
Results per page:

Aims. This study aimed to analyze the accuracy and errors associated with 3D-printed, patient-specific resection guides (3DP-PSRGs) used for bone tumour resection. Methods. We retrospectively reviewed 29 bone tumour resections that used 3DP-PSRGs based on 3D CT and 3D MRI. We evaluated the resection amount errors and resection margin errors relative to the preoperative plans. Guide-fitting errors and guide distortion were evaluated intraoperatively and one month postoperatively, respectively. We categorized each of these error types into three grades (grade 1, < 1 mm; grade 2, 1 to 3 mm; and grade 3, > 3 mm) to evaluate the overall accuracy. Results. The maximum resection amount error was 2 mm. Out of 29 resection amount errors, 15 (51.7%) were grade 1 errors and 14 (48.3%) were grade 2 errors. Complex resections were associated with higher-grade resection amount errors (p < 0.001). The actual resection margins correlated significantly with the planned margins; however, there were some discrepancies. The maximum guide-fitting error was 3 mm. There were 22 (75.9%), five (17.2%), and two (6.9%) grade 1, 2, and 3 guide-fitting errors, respectively. There was no significant association between complex resection and fitting error grades. The guide distortion after one month in all patients was rated as grade 1. Conclusion. In terms of the accurate resection amount according to the preoperative planning, 3DP-PSRGs can be a viable option for bone tumour resection. However, 3DP-PSRG use may be associated with resection margin length discrepancies relative to the planned margins. Such discrepancies should be considered when determining surgical margins. Therefore, a thorough evaluation of the preoperative imaging and surgical planning is still required, even if 3DP-PSRGs are to be used. Cite this article: Bone Joint J 2023;105-B(2):190–197


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 696 - 701
1 Jun 2023
Kurisunkal V Morris G Kaneuchi Y Bleibleh S James S Botchu R Jeys L Parry MC

Aims. Intra-articular (IA) tumours around the knee are treated with extra-articular (EA) resection, which is associated with poor functional outcomes. We aim to evaluate the accuracy of MRI in predicting IA involvement around the knee. Methods. We identified 63 cases of high-grade sarcomas in or around the distal femur that underwent an EA resection from a prospectively maintained database (January 1996 to April 2020). Suspicion of IA disease was noted in 52 cases, six had IA pathological fracture, two had an effusion, two had prior surgical intervention (curettage/IA intervention), and one had an osseous metastasis in the proximal tibia. To ascertain validity, two musculoskeletal radiologists (R1, R2) reviewed the preoperative imaging (MRI) of 63 consecutive cases on two occasions six weeks apart. The radiological criteria for IA disease comprised evidence of tumour extension within the suprapatellar pouch, intercondylar notch, extension along medial/lateral retinaculum, and presence of IA fracture. The radiological predictions were then confirmed with the final histopathology of the resected specimens. Results. The resection histology revealed 23 cases (36.5%) showing IA disease involvement compared with 40 cases without (62%). The intraobserver variability of R1 was 0.85 (p < 0.001) compared to R2 with κ = 0.21 (p = 0.007). The interobserver variability was κ = 0.264 (p = 0.003). Knee effusion was found to be the most sensitive indicator of IA involvement, with a sensitivity of 91.3% but specificity of only 35%. However, when combined with a pathological fracture, this rose to 97.5% and 100% when disease was visible in Hoffa’s fat pad. Conclusion. MRI imaging can sometimes overestimate IA joint involvement and needs to be correlated with clinical signs. In the light of our findings, we would recommend EA resections when imaging shows effusion combined with either disease in Hoffa’s fat pad or retinaculum, or pathological fractures. Cite this article: Bone Joint J 2023;105-B(6):696–701


Bone & Joint Research
Vol. 6, Issue 10 | Pages 577 - 583
1 Oct 2017
Sallent A Vicente M Reverté MM Lopez A Rodríguez-Baeza A Pérez-Domínguez M Velez R

Objectives. To assess the accuracy of patient-specific instruments (PSIs) versus standard manual technique and the precision of computer-assisted planning and PSI-guided osteotomies in pelvic tumour resection. Methods. CT scans were obtained from five female cadaveric pelvises. Five osteotomies were designed using Mimics software: sacroiliac, biplanar supra-acetabular, two parallel iliopubic and ischial. For cases of the left hemipelvis, PSIs were designed to guide standard oscillating saw osteotomies and later manufactured using 3D printing. Osteotomies were performed using the standard manual technique in cases of the right hemipelvis. Post-resection CT scans were quantitatively analysed. Student’s t-test and Mann–Whitney U test were used. Results. Compared with the manual technique, PSI-guided osteotomies improved accuracy by a mean 9.6 mm (p < 0.008) in the sacroiliac osteotomies, 6.2 mm (p < 0.008) and 5.8 mm (p < 0.032) in the biplanar supra-acetabular, 3 mm (p < 0.016) in the ischial and 2.2 mm (p < 0.032) and 2.6 mm (p < 0.008) in the parallel iliopubic osteotomies, with a mean linear deviation of 4.9 mm (p < 0.001) for all osteotomies. Of the manual osteotomies, 53% (n = 16) had a linear deviation > 5 mm and 27% (n = 8) were > 10 mm. In the PSI cases, deviations were 10% (n = 3) and 0 % (n = 0), respectively. For angular deviation from pre-operative plans, we observed a mean improvement of 7.06° (p < 0.001) in pitch and 2.94° (p < 0.001) in roll, comparing PSI and the standard manual technique. Conclusion. In an experimental study, computer-assisted planning and PSIs improved accuracy in pelvic tumour resections, bringing osteotomy results closer to the parameters set in pre-operative planning, as compared with standard manual techniques. Cite this article: A. Sallent, M. Vicente, M. M. Reverté, A. Lopez, A. Rodríguez-Baeza, M. Pérez-Domínguez, R. Velez. How 3D patient-specific instruments improve accuracy of pelvic bone tumour resection in a cadaveric study. Bone Joint Res 2017;6:577–583. DOI: 10.1302/2046-3758.610.BJR-2017-0094.R1


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXX | Pages 35 - 35
1 Jul 2012
Pennant S Gibbons C Whitwell D Ostlere S Morley J
Full Access

Introduction. Tissue diagnosis is essential to direct the definitive management of a suspected soft tissue or bone sarcoma tissue. Knowledge of both the diagnostic yield and accuracy of core needle biopsies is therefore important to give the investigating team information on the likelihood of their initial investigations achieving a diagnosis. Methods. This is a retrospective study of patients referred to a specialist orthopaedic centre for investigation of a suspected soft tissue or bone sarcoma. Details of all core needle biopsies performed in a 13-month period were obtained from the hospital database. We defined a diagnostic biopsy as either a specific tissue diagnosis or a biopsy that decided the definitive management of the patient, specifically if malignancy was excluded and no further intervention was required, to calculate the diagnostic yield. Diagnostic accuracy was established by comparing histological diagnosis at biopsy to that at final excision. Results. The overall diagnostic yield of the biopsies performed was 85% (125 of 148 biopsies) and the diagnostic accuracy was 93% (77 of 83). The diagnostic yield of soft tissue lesions was 93% (79 of 85) and accuracy 98%. For bone lesions the diagnostic yield was 73% (46 of 73) and accuracy was 85%. Discussion. Knowing the diagnostic yield and accuracy of biopsies performed allows the investigating team to give patients and colleagues a figure detailing the likely success of a soft tissue or bone biopsy in being diagnostic. In addition this data provides the investigating team with information on specific biopsy types that are less likely to be diagnostic, such as bone lesions requiring CT guidance. These may benefit from another biopsy method to avoid delay in diagnosis and facilitate timely management


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 551 - 558
1 May 2023
Wang H Ji T Qu H Yan T Li D Yang R Tang X Guo W

Aims. The aim of this study was to determine the rate of indocyanine green (ICG) staining of bone and soft-tissue tumours, as well as the stability and accuracy of ICG fluorescence imaging in detecting tumour residuals during surgery for bone and soft-tissue tumours. Methods. ICG fluorescence imaging was performed during surgery in 34 patients with bone and soft-tissue tumours. ICG was administered intravenously at a dose of 2 mg/kg over a period of 60 minutes on the day prior to surgery. The tumour stain rate and signal-to-background ratio of each tumour were post hoc analyzed. After tumour resection, the tumour bed was scanned to locate sites with fluorescence residuals, which were subsequently inspected and biopsied. Results. The overall tumour stain rate was 88% (30/34 patients), and specific stain rates included 90% for osteosarcomas and 92% for giant cell tumours. For malignant tumours, the overall stain rate was 94%, while it was 82% for benign tumours. The ICG tumour stain was not influenced by different pathologies, such as malignant versus benign pathology, the reception (or lack thereof) of neoadjuvant chemotherapies, the length of time between drug administration and surgery, the number of doses of denosumab for patients with giant cell tumours, or the tumour response to neoadjuvant chemotherapy. The overall accuracy rate of successfully predicting tumour residuals using fluorescence was 49% (23/47 pieces of tissue). The accuracy rate after en bloc resection was significantly lower than that after piecemeal resection (16% vs 71%; p < 0.001). Conclusion. A high percentage of bone and soft-tissue tumours can be stained by ICG and the tumour staining with ICG was stable. This approach can be used in both benign and malignant tumours, regardless of whether neoadjuvant chemotherapy is adopted. The technique is also useful to detect tumour residuals in the wound, especially in patients undergoing piecemeal resection. Cite this article: Bone Joint J 2023;105-B(5):551–558


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 99 - 106
1 Jan 2024
Khal AA Aiba H Righi A Gambarotti M Atherley O'Meally AO Manfrini M Donati DM Errani C

Aims. Low-grade central osteosarcoma (LGCOS), a rare type of osteosarcoma, often has misleading radiological and pathological features that overlap with those of other bone tumours, thereby complicating diagnosis and treatment. We aimed to analyze the clinical, radiological, and pathological features of patients with LGCOS, with a focus on diagnosis, treatment, and outcomes. Methods. We retrospectively analyzed the medical records of 49 patients with LGCOS (Broder’s grade 1 to 2) treated between January 1985 and December 2017 in a single institute. We examined the presence of malignant features on imaging (periosteal reaction, cortical destruction, soft-tissue invasion), the diagnostic accuracy of biopsy, surgical treatment, and oncological outcome. Results. Based on imaging, 35 of 49 patients (71.4%) exhibited malignant features. Overall, 40 of 49 patients (81.6%) had undergone a biopsy before en-bloc resection: 27 of 40 patients (67.5%) were diagnosed on the first biopsy, which was more accurate when carried out by open rather than needle biopsy (91.3% vs 35.3% diagnostic accuracy, respectively; p < 0.001). Of the 40 patients treated by en-bloc resection, surgical margins were wide in 38 (95.0%) and marginal in two (5.0%). Furthermore, nine of 49 patients (18.4%) underwent curettage (intralesional margin) without previous biopsy. All patients with a positive margin developed local recurrence. Distant metastases occurred in five of 49 patients (10.2%). The mean five-year overall survival (OS) and distant relapse-free survival (D-RFS) were 89.3% (SD 5.1%) and 85.7% (SD 5.5%), respectively. Univariate analysis showed that the occurrence of distant metastasis was a poor prognostic factor for OS (hazard ratio 11.54, 95% confidence interval (CI) 1.92 to 69.17; p < 0.001). Local recurrence was a poor prognostic factor for D-RFS (HR 8.72, 95% CI 1.69 to 45.0; p = 0.002). Conclusion. The diagnosis of LGCOS can be challenging because it may present with non-malignant features and has a low diagnostic accuracy on biopsy. If precisely diagnosed, LGCOS can be successfully treated by surgical excision with wide margins. Cite this article: Bone Joint J 2024;106-B(1):99–106


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 702 - 710
1 Jun 2023
Yeramosu T Ahmad W Bashir A Wait J Bassett J Domson G

Aims. The aim of this study was to identify factors associated with five-year cancer-related mortality in patients with limb and trunk soft-tissue sarcoma (STS) and develop and validate machine learning algorithms in order to predict five-year cancer-related mortality in these patients. Methods. Demographic, clinicopathological, and treatment variables of limb and trunk STS patients in the Surveillance, Epidemiology, and End Results Program (SEER) database from 2004 to 2017 were analyzed. Multivariable logistic regression was used to determine factors significantly associated with five-year cancer-related mortality. Various machine learning models were developed and compared using area under the curve (AUC), calibration, and decision curve analysis. The model that performed best on the SEER testing data was further assessed to determine the variables most important in its predictive capacity. This model was externally validated using our institutional dataset. Results. A total of 13,646 patients with STS from the SEER database were included, of whom 35.9% experienced five-year cancer-related mortality. The random forest model performed the best overall and identified tumour size as the most important variable when predicting mortality in patients with STS, followed by M stage, histological subtype, age, and surgical excision. Each variable was significant in logistic regression. External validation yielded an AUC of 0.752. Conclusion. This study identified clinically important variables associated with five-year cancer-related mortality in patients with limb and trunk STS, and developed a predictive model that demonstrated good accuracy and predictability. Orthopaedic oncologists may use these findings to further risk-stratify their patients and recommend an optimal course of treatment. Cite this article: Bone Joint J 2023;105-B(6):702–710


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 203 - 211
1 Feb 2024
Park JH Won J Kim H Kim Y Kim S Han I

Aims. This study aimed to compare the performance of survival prediction models for bone metastases of the extremities (BM-E) with pathological fractures in an Asian cohort, and investigate patient characteristics associated with survival. Methods. This retrospective cohort study included 469 patients, who underwent surgery for BM-E between January 2009 and March 2022 at a tertiary hospital in South Korea. Postoperative survival was calculated using the PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models. Model performance was assessed with area under the curve (AUC), calibration curve, Brier score, and decision curve analysis. Cox regression analyses were performed to evaluate the factors contributing to survival. Results. The SORG model demonstrated the highest discriminatory accuracy with AUC (0.80 (95% confidence interval (CI) 0.76 to 0.85)) at 12 months. In calibration analysis, the PATHfx3.0 and OPTIModel models underestimated survival, while the SPRING13 and IOR models overestimated survival. The SORG model exhibited excellent calibration with intercepts of 0.10 (95% CI -0.13 to 0.33) at 12 months. The SORG model also had lower Brier scores than the null score at three and 12 months, indicating good overall performance. Decision curve analysis showed that all five survival prediction models provided greater net benefit than the default strategy of operating on either all or no patients. Rapid growth cancer and low serum albumin levels were associated with three-, six-, and 12-month survival. Conclusion. State-of-art survival prediction models for BM-E (PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models) are useful clinical tools for orthopaedic surgeons in the decision-making process for the treatment in Asian patients, with SORG models offering the best predictive performance. Rapid growth cancer and serum albumin level are independent, statistically significant factors contributing to survival following surgery of BM-E. Further refinement of survival prediction models will bring about informed and patient-specific treatment of BM-E. Cite this article: Bone Joint J 2024;106-B(2):203–211


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 808 - 814
1 Jul 2023
Gundavda MK Lazarides AL Burke ZDC Focaccia M Griffin AM Tsoi KM Ferguson PC Wunder JS

Aims

The preoperative grading of chondrosarcomas of bone that accurately predicts surgical management is difficult for surgeons, radiologists, and pathologists. There are often discrepancies in grade between the initial biopsy and the final histology. Recent advances in the use of imaging methods have shown promise in the ability to predict the final grade. The most important clinical distinction is between grade 1 chondrosarcomas, which are amenable to curettage, and resection-grade chondrosarcomas (grade 2 and 3) which require en bloc resection. The aim of this study was to evaluate the use of a Radiological Aggressiveness Score (RAS) to predict the grade of primary chondrosarcomas in long bones and thus to guide management.

Methods

A total of 113 patients with a primary chondrosarcoma of a long bone presenting between January 2001 and December 2021 were identified on retrospective review of a single oncology centre’s prospectively collected database. The nine-parameter RAS included variables from radiographs and MRI scans. The best cut-off of parameters to predict the final grade of chondrosarcoma after resection was determined using a receiver operating characteristic curve (ROC), and this was correlated with the biopsy grade.


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 492 - 500
1 May 2024
Miwa S Yamamoto N Hayashi K Takeuchi A Igarashi K Tada K Taniguchi Y Morinaga S Asano Y Tsuchiya H

Aims

Surgical site infection (SSI) after soft-tissue sarcoma (STS) resection is a serious complication. The purpose of this retrospective study was to investigate the risk factors for SSI after STS resection, and to develop a nomogram that allows patient-specific risk assessment.

Methods

A total of 547 patients with STS who underwent tumour resection between 2005 and 2021 were divided into a development cohort and a validation cohort. In the development cohort of 402 patients, the least absolute shrinkage and selection operator (LASSO) regression model was used to screen possible risk factors of SSI. To select risk factors and construct the prediction nomogram, multivariate logistic regression was used. The predictive power of the nomogram was evaluated by receiver operating curve (ROC) analysis in the validation cohort of 145 patients.


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 323 - 330
1 Mar 2023
Dunbar NJ Zhu YM Madewell JE Penny AN Fregly BJ Lewis VO

Aims

Internal hemipelvectomy without reconstruction of the pelvis is a viable treatment for pelvic sarcoma; however, the time it takes to return to excellent function is quite variable. Some patients require greater time and rehabilitation than others. To determine if psoas muscle recovery is associated with changes in ambulatory function, we retrospectively evaluated psoas muscle size and limb-length discrepancy (LLD) before and after treatment and their correlation with objective functional outcomes.

Methods

T1-weighted MR images were evaluated at three intervals for 12 pelvic sarcoma patients following interval hemipelvectomy without reconstruction. Correlations between the measured changes and improvements in Timed Up and Go test (TUG) and gait speed outcomes were assessed both independently and using a stepwise multivariate regression model.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XIV | Pages 9 - 9
1 Apr 2012
Kochergina N Zimina O Rotobelskaja L Sokolovskij V Bojarina N Bludov A Nered A Tsibulskaya J
Full Access

Aim. Improving the quality of clinical and radiologic differential diagnosis of intramedullary tumours of long bones. Methods. A database includes clinical and radiologic (X-ray, CT and MRI methods) signs of 106 patients with osteosarcoma (n = 44), chondrosarcoma (n = 31) and giant cell tumour (n = 31). Multivariate analysis of clinical and radiologic characteristics and developing informative set of criteria (decision rule) for the differential diagnosis of osteosarcoma, chondrosarcoma and giant cell tumour were provided with program «ASTA». Results. Before examination in Blokhin Oncology Research Centre in 70% of the osteosarcomas and chondrosarcomas and 60% of GCTs the size of the tumour was more than 8 cm. The reason of the late patients' admission to a specialized medical department is inaccurate diagnosis of these tumours. In our study diagnostic accuracy of the differential diagnosis of osteosarcoma, chondrosarcoma and GCT was 89% in case if the decision rules were based on 14 the most informative clinical and X-ray features, 84% if based on 14 clinical and CT features and 88% if based on 9 MRI features. The comparative analysis revealed a high accuracy in determination of these tumours by using decision rules developed on the basis of multivariate analysis of clinical and X-ray criteria. Conclusion. The comparative accuracy of the developed differential diagnostic criteria (decision rules) of clinical and X-ray, clinical and CT and MRI features proved high informative of each method. The diagnostic accuracy of clinical and X-ray decision rule (89%) exceeded the diagnostic accuracy of radiologist's examination before (62%) and after (83%) admission to Oncology Centre. It proves the necessity for further development and practical application of diagnostic expert systems


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 168 - 176
1 Jan 2022
Spence S Doonan J Farhan-Alanie OM Chan CD Tong D Cho HS Sahu MA Traub F Gupta S

Aims

The modified Glasgow Prognostic Score (mGPS) uses preoperative CRP and albumin to calculate a score from 0 to 2 (2 being associated with poor outcomes). mGPS is validated in multiple carcinomas. To date, its use in soft-tissue sarcoma (STS) is limited, with only small cohorts reporting that increased mGPS scores correlates with decreased survival in STS patients.

Methods

This retrospective multicentre cohort study identified 493 STS patients using clinical databases from six collaborating hospitals in three countries. Centres performed a retrospective data collection for patient demographics, preoperative blood results (CRP and albumin levels and neutrophil, leucocyte, and platelets counts), and oncological outcomes (disease-free survival, local, or metastatic recurrence) with a minimum of two years' follow-up.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1207 - 1211
1 Sep 2006
Ashford RU McCarthy SW Scolyer RA Bonar SF Karim RZ Stalley PD

The most appropriate protocol for the biopsy of musculoskeletal tumours is controversial, with some authors advocating CT-guided core biopsy. At our hospital the initial biopsies of most musculoskeletal tumours has been by operative core biopsy with evaluation by frozen section which determines whether diagnostic tissue has been obtained and, if possible, gives the definitive diagnosis. In order to determine the accuracy and cost-effectiveness of this protocol we have undertaken a retrospective audit of biopsies of musculoskeletal tumours performed over a period of two years. A total of 104 patients had biopsies according to this regime. All gave the diagnosis apart from one minor error which did not alter the management of the patient. There was no requirement for re-biopsy. This protocol was more labour-intensive and 38% more costly than CT-guided core biopsy (AU$1804 vs AU$1308). However, the accuracy and avoidance of the anxiety associated with repeat biopsy outweighed these disadvantages


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 261 - 266
1 Feb 2017
Laitinen MK Parry MC Albergo JI Grimer RJ Jeys LM

Aims. Due to the complex anatomy of the pelvis, limb-sparing resections of pelvic tumours achieving adequate surgical margins, can often be difficult. The advent of computer navigation has improved the precision of resection of these lesions, though there is little evidence comparing resection with or without the assistance of navigation. Our aim was to evaluate the efficacy of navigation-assisted surgery for the resection of pelvic bone tumours involving the posterior ilium and sacrum. . Patients and Methods. Using our prospectively updated institutional database, we conducted a retrospective case control study of 21 patients who underwent resection of the posterior ilium and sacrum, for the treatment of a primary sarcoma of bone, between 1987 and 2015. The resection was performed with the assistance of navigation in nine patients and without navigation in 12. We assessed the accuracy of navigation-assisted surgery, as defined by the surgical margin and how this affects the rate of local recurrence, the disease-free survival and the effects on peri-and post-operative morbidity. . Results. The mean age of the patients was 36.4 years (15 to 66). The mean size of the tumour was 10.9 cm. In the navigation-assisted group, the margin was wide in two patients (16.7%), marginal in six (66.7%) and wide-contaminated in one (11.1%) with no intralesional margin. In the non-navigated-assisted group; the margin was wide in two patients (16.7%), marginal in five (41.7%), intralesional in three (25.0%) and wide-contaminated in two (16.7%). Local recurrence occurred in two patients in the navigation-assisted group (22.2%) and six in the non-navigation-assisted group (50.0%). The disease-free survival was significantly better when operated with navigation-assistance (p = 0.048). The blood loss and operating time were less in the navigated-assisted group, as was the risk of a foot drop post-operatively. Conclusion . The introduction of navigation-assisted surgery for the resection of tumours of the posterior ilium and sacrum has increased the safety for the patients and allows for a better oncological outcome. . Cite this article: Bone Joint J 2017;99-B:261–6


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 258 - 264
1 Feb 2015
Young PS Bell SW Mahendra A

We report our experience of using a computer navigation system to aid resection of malignant musculoskeletal tumours of the pelvis and limbs and, where appropriate, their subsequent reconstruction. We also highlight circumstances in which navigation should be used with caution. We resected a musculoskeletal tumour from 18 patients (15 male, three female, mean age of 30 years (13 to 75) using commercially available computer navigation software (Orthomap 3D) and assessed its impact on the accuracy of our surgery. Of nine pelvic tumours, three had a biological reconstruction with extracorporeal irradiation, four underwent endoprosthetic replacement (EPR) and two required no bony reconstruction. There were eight tumours of the bones of the limbs. Four diaphyseal tumours underwent biological reconstruction. Two patients with a sarcoma of the proximal femur and two with a sarcoma of the proximal humerus underwent extra-articular resection and, where appropriate, EPR. One soft-tissue sarcoma of the adductor compartment which involved the femur was resected and reconstructed using an EPR. Computer navigation was used to aid reconstruction in eight patients. Histological examination of the resected specimens revealed tumour-free margins in all patients. Post-operative radiographs and CT showed that the resection and reconstruction had been carried out as planned in all patients where navigation was used. In two patients, computer navigation had to be abandoned and the operation was completed under CT and radiological control. The use of computer navigation in musculoskeletal oncology allows accurate identification of the local anatomy and can define the extent of the tumour and proposed resection margins. Furthermore, it helps in reconstruction of limb length, rotation and overall alignment after resection of an appendicular tumour. . Cite this article: Bone Joint J 2015;97-B:258–64


The Bone & Joint Journal
Vol. 98-B, Issue 2 | Pages 266 - 270
1 Feb 2016
Stevenson JD McNair M Cribb GL Cool WP

Aims. Surgical intervention in patients with bone metastases from breast cancer is dependent on the estimated survival of the patient. The purpose of this paper was to identify factors that would predict survival so that specific decisions could be made in terms of surgical (or non-surgical) management. . Methods. The records of 113 consecutive patients (112 women) with metastatic breast cancer were analysed for clinical, radiological, serological and surgical outcomes. Their median age was 61 years (interquartile range 29 to 90) and the median duration of follow-up was 1.6 years (standard deviation (. sd. ) 1.9, 95% confidence interval (CI) 0 to 5.9). The cumulative one- and five-year rates of survival were 68% and 16% (95% Cl 60 to 77 and 95% CI 10 to 26, respectively). . Results. Linear discriminant analysis identified a ‘quadruple A’ predictor of survival by reclassifying the sum of the albumin, adjusted calcium, alkaline phosphatase and age covariates each multiplied by a determined factor. The accuracy of this ‘quadruple A’ predictor was 90% with a sensitivity of 100% and a specificity of 88%. A receiver operating characteristic (ROC) curve revealed an area under the curve of 79%. Survival analysis for this ‘quadruple A’ predictor (<  = one or > one year survival) was statistically significant using the log rank test (p = 0.0004) and Cox proportional hazard (p = 0.001). Multivariate analysis showed the 'quadruple A' predictor to be the only independent predictor of survival (p = 0.01). . Discussion. The 'quadruple A' predictor, together with other positive predictors of survival, can be used by oncologists, orthopaedic and breast surgeons to estimate survival and therefore guide management. Cite this article: Bone Joint J 2016;98-B:266–70


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1414 - 1420
1 Oct 2012
Cho HS Oh JH Han I Kim H

We evaluated the oncological and functional outcome of 18 patients, whose malignant bone tumours were excised with the assistance of navigation, and who were followed up for more than three years. There were 11 men and seven women, with a mean age of 31.8 years (10 to 57). There were ten operations on the pelvic ring and eight joint-preserving limb salvage procedures. The resection margins were free of tumour in all specimens. The tumours, which were stage IIB in all patients, included osteosarcoma, high-grade chondrosarcoma, Ewing’s sarcoma, malignant fibrous histiocytoma of bone, and adamantinoma. The overall three-year survival rate of the 18 patients was 88.9% (95% confidence interval (CI) 75.4 to 100). The three-year survival rate of the patients with pelvic malignancy was 80.0% (95% CI 55.3 to 100), and of the patients with metaphyseal malignancy was 100%. The event-free survival was 66.7% (95% CI 44.9 to 88.5). Local recurrence occurred in two patients, both of whom had a pelvic malignancy. The mean Musculoskeletal Tumor Society functional score was 26.9 points at a mean follow-up of 48.2 months (22 to 79). We suggest that navigation can be helpful during surgery for musculoskeletal tumours; it can maximise the accuracy of resection and minimise the unnecessary sacrifice of normal tissue by providing precise intra-operative three-dimensional radiological information


The Bone & Joint Journal
Vol. 96-B, Issue 8 | Pages 1098 - 1105
1 Aug 2014
Brown MT Gikas PD Bhamra JS Skinner JA Aston WJS Pollock RC Saifuddin A Briggs TWR

The pre-operative differentiation between enchondroma, low-grade chondrosarcoma and high-grade chondrosarcoma remains a diagnostic challenge. We reviewed the accuracy and safety of the radiological grading of cartilaginous tumours through the assessment of, first, pre-operative radiological and post-operative histological agreement, and second the rate of recurrence in lesions confirmed as high-grade on histology. We performed a retrospective review of major long bone cartilaginous tumours managed by curettage as low grade between 2001 and 2012. A total of 53 patients with a mean age of 47.6 years (8 to 71) were included. There were 23 men and 30 women. The tumours involved the femur (n = 20), humerus (n = 18), tibia (n = 9), fibula (n = 3), radius (n = 2) and ulna (n = 1). Pre-operative diagnoses resulted from multidisciplinary consensus following radiological review alone for 35 tumours, or with the addition of pre-operative image guided needle biopsy for 18. The histologically confirmed diagnosis was enchondroma for two (3.7%), low-grade chondrosarcoma for 49 (92.6%) and high-grade chondrosarcoma for two (3.7%). Three patients with a low-grade tumour developed a local recurrence at a mean of 15 months (12 to 17) post-operatively. A single high-grade recurrence (grade II) was treated with tibial diaphyseal replacement. The overall recurrence rate was 7.5% at a mean follow-up of 4.7 years (1.2 to 12.3). Cartilaginous tumours identified as low-grade on pre-operative imaging with or without additional image-guided needle biopsy can safely be managed as low-grade without pre-operative histological diagnosis. A few tumours may demonstrate high-grade features histologically, but the rates of recurrence are not affected. Cite this article: Bone Joint J 2014; 96-B:1098–105


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XIV | Pages 5 - 5
1 Apr 2012
Kar M Kumar V Sharma U Deo S Shukla N Jagannathan N Datta Gupta S
Full Access

Aim. Grade is the most important predictor of the biological behaviour of soft tissue sarcomas. Assigning a pathologic grade is always a difficult task as discordance rate is 30-40% even among experienced sarcoma pathologists. Many of these tumours are heterogeneously large and only small fractions are sampled for biopsy. This emphasizes the need for an objective and accurate assessment of histology. Our aim is to evaluate the role of Choline as a tumour marker in (i) differentiating benign from malignant soft tissue tumour, (ii) to distinguish recurrent/residual tumours using in-vivo MR spectroscopy. Methods. PMRS Study was performed at 1.5Tesla MRI machine of the lesions in 25 patients. Single-voxel (SVS) study has been done in 10 cases and chemical shift imaging (CSI) study characterised the heterogeneity of the tumour in 15 cases by using point – resolved spectroscopic sequence (PRESS) with echo time TR=2000/TE = 30, 135 & 270 msec. The choline peak, identified at 3.2 ppm in spectra was considered significant. MRS results and histopathologic findings were correlated and P < 0.001, considered being significant. Results. Choline peak was found in 17 out of 17 patients with sarcomas where as three patient with benign and five treated sarcomas patients with no residual disease did not show any choline. In vivo spectroscopy here shows sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 100% each. In vivo spectroscopy shows sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 100% each where as preoperative biopsy shows 75%, 100%, 100%, 72.7% and 85% respectively. Conclusion. Choline peak in PMRS study can predict the grade, margin status and tumour activity in recurrent and/or residual tumour. A major study should be done to validate its efficacy for routine use in oncology