Introduction. Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for
Introduction. Proper
Introduction. Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for
INTRODUCTION. Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for
Abstract. Objectives. Accurate orientation of the acetabular component during a total hip replacement is critical for optimising patient function, increasing the longevity of components, and reducing the risk of complications. This study aimed to determine the validity of a novel VR platform (AescularVR) in assessing
Introduction.
Introduction:. Wear, wear-associated osteolysis, and instability are the most common reasons for revision total hip arthroplasty. These failures have been shown to be associated with acetabular component malpositioning. However, optimal
Introduction. The optimal
Many factors can negatively impact acetabular component positioning including poor visualization, increased patient size, inaccuracies of mechanical guides, and inconsistent precision of conventional instruments and techniques, and changes in patient positioning. Improper orientation contributes to increased dislocation rates, leg length discrepancies, altered hip biomechanics, component impingement, acetabular component migration, bearing surface wear, and pelvic osteolysis thus affecting revision rates and long-term survivorship. Despite the established definitions of acetabular safe zones, recent analysis of U.S. Medicare THA data found dislocation rates during the first six months to be 3.9% for primary surgeries and 14.4% for revision surgeries. Accurate and precise
Orientation of the native acetabular plane as defined by the transverse acetabular ligament (TAL) and the posterior labrum was measured intra-operatively using computer-assisted navigation in 39 hips. In order to assess the influence of alignment on impingement, the range of movement was calculated for that defined by the TAL and the posterior labrum and compared with a standard acetabular component position (abduction 45°/anteversion 15°). With respect to the registration of the plane defined by the TAL and the posterior labrum, there was moderate interobserver agreement (r = 0.64, p <
0.001) and intra-observer reproducibility (r = 0.73, p <
0.001). The mean
INTRODUCTION. The introduction of hard-on-hard bearings and the consequences of increased wear due to edge-loading have renewed interest in the importance of
Background. The current orthopaedic literature demonstrates a clear relationship between acetabular component positioning, polyethylene wear and risk of dislocation following Total Hip Arthroplasty (THA). Problems with edge loading, stripe wear and squeaking are also associated with higher acetabular inclination angles, particularly in hard-on-hard bearing implants. The important parameters of acetabular component positioning are depth, height, version and inclination. Acetabular component depth, height and version can be controlled with intra-operative reference to the transverse acetabular ligament. Control of acetabular component inclination, particularly in the lateral decubitus position, is more difficult and remains a challenge for the Orthopaedic Surgeon. Lewinnek et al described a ‘safe zone’ of
The aim of this study was to determine whether there is a difference
in the rate of wear between acetabular components positioned within
and outside the ‘safe zones’ of anteversion and inclination angle. We reviewed 100 hips in 94 patients who had undergone primary
total hip arthroplasty (THA) at least ten years previously. Patients
all had the same type of acetabular component with a bearing couple
which consisted of a 28 mm cobalt-chromium head on a highly crosslinked
polyethylene (HXLPE) liner. A supine radiostereometric analysis
(RSA) examination was carried out which acquired anteroposterior
(AP) and lateral paired images. Acetabular component anteversion
and inclination angles were measured as well as total femoral head
penetration, which was divided by the length of implantation to
determine the rate of polyethylene wear.Aims
Patients and Methods
We developed a mathematical model of the pelvis to evaluate the influence of the pelvis movements on anteversion and inclination of an acetabular cup arbitrarily implanted with 10° of anteversion and 45° of abduction. Measurment were particularly focused on evaluating the influence of a −15 to 15 degrees pelvic rotation around the three space axes. When considering the anteroposterior axis, the ranges of variation are almost 30° for abduction and 6° for anteversion. When considering vertical and mediolateral axes, the magnitude of variation is 30° for anteversion and 3° for abduction We demonstrate a close relationship between acetabular cup anteversion and pelvic rotations in all planes. In contrast, acetabular cup abduction is mainly related to the rotation around the anteroposterior axis. The influence of the pelvic position on the evaluation of acetabular cup alignement requires very precise CT measurement protocols to make the evaluation accurate and reproductible.
Mal-positioning of the acetabular component is associated with increased dislocation rate, increased wear and component impingement. Navigation provides real time feedback to the surgeon and allows the accurate position of implants. Compared to conventional techniques of total hip replacement; use of the imageless navigation system has shown to improve accuracy of implant positioning. When impacting uncemented acetabular components under navigation, there is often a deviation from the planned abduction and anteversion measurement due to deflection of the implant in the reamed cavity. Although there exists the ability to navigate the reaming of the acetabular cavity; this is not widely performed. The ability to ream the acetabular cavity in the exact orientation of the planned acetabular component may provide some theoretical advantage on the final acetabular position. The purpose of this study was to compare the effect of navigated Vs free hand acetabulum reaming on achieving the planned
Metal on Metal hip resurfacing (MoM HR) can be an effective operation for the young arthritic hip population. However, errors in cup orientation have been associated with increased wear, circulating blood metal ions, and soft tissue abnormalities that can lead to premature failure of the bearing surface and subsequent revision surgery. While image free computer guidance has been shown to increase surgical accuracy in total hip arthroplasty, the role of image based technology in MoM HR is unclear. In this study, we compared the accuracy of cup orientation in MoM HR performed by either freehand technique or CT based navigation. Seventy five patients (81 hips) underwent either freehand (n=42) or navigation (n=39) surgery, both requiring a three dimensional (3D) CT surgical plan. Surgery was conducted by hip specialists blind to the method of cup implantation until the operation. Deviation in inclination and version from the planned orientation, as well as, number of cups within a 10° safe zone and 5° optimal zone of the target position was calculated using post operative 3D CT analysis. Error in inclination was significantly reduced with navigation compared to freehand technique (4° vs 6°, p=0.02). We could not detect a difference between the two groups for version error (5° vs 7°, p=0.06). There was a significantly greater number of hips within a 10° (87% vs 67%, p=0.04) and 5° (50% vs 20%, p=0.06) safe zone when navigated. Image based navigation can substantially improve accuracy in cup orientation. The results of our freehand group appear better than historic controls, suggesting the use of a 3D plan may help to reduce technical error and improve the learning curve in this technically demanding procedure. We advocate the use of image based navigation in MoM hip resurfacing arthroplasty.
In order to avoid complications of hip arthroplasty such as dislocation, impingement and eccentric liner wear accurate acetabular orientation is essential. The three-dimensional assessment of acetabular cup orientation using two-dimensional plain radiographs is inaccurate. The aim of this study was to develop a CT-based protocol to accurately measure postoperative acetabular cup inclination and anteversion establishing which bony reference points facilitate the most accurate estimation of these variables. An all-polyethylene acetabular liner was implanted into a cadaveric acetabulum. A conventional pelvic CT scan was performed and reformatted images created in both functional and anterior pelvic planes. CT images were transferred to a Freedom-Plus Graphics software package enabling an identical, virtual, three dimensional model of the cadaveric pelvis to be created. Using a computer interface this model could be ‘palpated’, bony landmarks accurately identified and definitive acetabular cup orientation established. Using original CT scans, acetabular cup inclination and anteversion were measured on five occasions by eight radiographers using differing predetermined bony landmarks as reference points. The intra- and inter-observer variation in measurement of acetabular cup orientation using varying bony reference points was assessed in comparison to the previously elucidated definitive cup position. Statistical analysis using appropriate ANOVA models was performed in order to assess the significance of the results obtained. Virtually derived definitive acetabular cup orientation was measured showing cup inclination and anteversion as 41.0 and 22.5 degrees respectively. Mean CT-based measurement of cup inclination and anteversion by eight radiographers were 43.1 and 20.8 degrees respectively. No statistically significant difference was found in intra- and inter-observer recorded results. No statistically significant differences were found when using different bony landmarks for the measurement of inclination and anteversion (p= 0.255 and 0.324 respectively). CT assessment of acetabular component inclination and anteversion is accurate, reliable and reproducible when measured using differing bony landmarks as reference points. We recommend measuring acetabular inclination and anteversion from the inferior acetabular wall/teardrop and posterior ischium respectively. The Perth CT hip protocol is easily reproducible in the clinical setting both in the routine assessment of hip arthroplasty patients and as research tool. In our unit its initial application will be to validate commercially available hip navigation systems.
Published data has shown that only 45% of acetabular components were in an acceptable position, where positioning was determined clinically by the surgeon intra-operatively. The aim of this study is to assess the accuracy of cup orientation, using computer tomography (CT), when the TAL is used as the intra-operative guide. In this prospective study, the TAL was used as the anatomical reference for positioning the cup. The TAL was graded 1 to 4 based on visibility of the ligament. The version and abduction angles were estimated clinically and recorded by the surgeon after insertion of the cup. Post-operatively the true orientation of the cup was measured using CT. Statistical analyses were carried out to calculate the difference between the intra-operative estimation of cup orientation and the true cup position as measured by CT. Ethical approval was granted and informed consent was obtained for all the patients. Forty-eight hips have been studied to date. The TAL was easily identifiable in the majority of cases. Overall, the cup version was under-estimated by the surgeon when the TAL was utilized as the anatomical landmark. The true mean acetabular component version was 26.5 degrees [range from 11 to 41 degrees]. The true mean abduction angle was 43.6 degrees [range from 35 to 55 degrees]. The mean difference between surgeon estimation and CT measurement for cup version was 4 degrees of underestimation [range from 14 degrees of underestimation to 11 degrees of overestimation]. The mean difference for abduction angle was 0.1 degrees [range from 14 degrees of underestimation to 10 degrees of overestimation]. When using TAL as an intra-operative guide, 64% of acetabular components were within the target range of 15 to 30 degrees of anteversion, as measured by CT, compared to 45% in previously published study (Wines, A &
McNicol, D, J. Arthroplasty, 2006). TAL improves the accuracy of acetabular component version, when utilized as an anatomical landmark during cup insertion in primary total hip arthroplasty. It is reliable and easily identifiable in the majority of cases.