Advertisement for orthosearch.org.uk
Results 1 - 20 of 137
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1020 - 1026
1 Aug 2016
Śmigielski R Zdanowicz U Drwięga M Ciszek B Williams A

Anterior cruciate ligament (ACL) reconstruction is commonly performed and has been for many years. Despite this, the technical details related to ACL anatomy, such as tunnel placement, are still a topic for debate. In this paper, we introduce the flat ribbon concept of the anatomy of the ACL, and its relevance to clinical practice. Cite this article: Bone Joint J 2016;98-B:1020–6


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1511 - 1518
1 Nov 2020
Banger MS Johnston WD Razii N Doonan J Rowe PJ Jones BG MacLean AD Blyth MJG

Aims. The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery. Methods. An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups. Results. The pre- to postoperative changes in joint anatomy were significantly less in patients undergoing bi-UKA in all three planes in both the femur and tibia, except for femoral sagittal component orientation in which there was no difference. Overall, for the six parameters of alignment (three femoral and three tibial), 47% of bi-UKAs and 24% TKAs had a change of < 2° (p = 0.045). The change in HKAA towards neutral in varus and valgus knees was significantly less in patients undergoing bi-UKA compared with those undergoing TKA (p < 0.001). Alignment was neutral in those undergoing TKA (mean 179.5° (SD 3.2°)) while those undergoing bi-UKA had mild residual varus or valgus alignment (mean 177.8° (SD 3.4°)) (p < 0.001). Conclusion. Robotic-assisted, cruciate-sparing bi-UKA maintains the natural anatomy of the knee in the coronal, sagittal, and axial planes better, and may therefore preserve normal joint kinematics, compared with a mechanically aligned TKA. This includes preservation of coronal joint line obliquity. HKAA alignment was corrected towards neutral significantly less in patients undergoing bi-UKA, which may represent restoration of the pre-disease constitutional alignment (p < 0.001). Cite this article: Bone Joint J 2020;102-B(11):1511–1518


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 3 | Pages 452 - 458
1 May 1999
Stäubli H Dürrenmatt U Porcellini B Rauschning W

We studied the anatomy of the patellofemoral joint in the axial plane on cryosections from a cadaver knee and on MR arthrotomograms from 30 patients. The cryosections revealed differences in the geometry and anatomy of the surface of the articular cartilage and corresponding subchondral osseous contours of the patellofemoral joint. On the MR arthrotomograms the surface geometry of the cartilage matched the osseous contour of the patella in only four of the 30 knees. The articular cartilaginous surface of the intercondylar sulcus and corresponding osseous contour of the femoral trochlea matched in only seven knees. Since MR arthrotomography can distinguish between the surface geometry of the articular cartilage and subchondral osseous anatomy of the patellofemoral joint, it allows the surgeon and the radiologist to appraise the true articulating surfaces. We therefore recommend MR arthrotomography as the imaging technique of choice


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 357 - 363
1 Mar 2011
Gillespie RJ Levine A Fitzgerald SJ Kolaczko J DeMaio M Marcus RE Cooperman DR

Recently, gender-specific designs of total knee replacement have been developed to accommodate anatomical differences between males and females. We examined a group of male and female distal femora matched for age and height, to determine if there was a difference in the aspect ratio (mediolateral distance versus anteroposterior distance) and the height of the anterior flange between the genders. The Hamann-Todd Collection provided 1207 skeletally mature cadaver femora. The femoral length, the anteroposterior height, height of the lateral and medial flanges and the mediolateral width were measured in all the specimens. The mechanical axis of the femur, the cut articular width and the aspect ratio were assessed. Statistical analysis of the effect of gender upon the aspect ratio and the lateral and medial flanges was undertaken, controlling for age, height and race. The mean aspect ratio of male femora was 1.21 (. sd. 0.07) and of female femora it was 1.16 (. sd. 0.06) (p < 0.001). There was no significant difference between male and female specimens in the mean size of the lateral flange (6.57 mm (. sd. 2.57) and 7.02 mm (. sd. 2.36), respectively; p = 0.099) or of the medial flange (3.03 mm (. sd. 2.47) and 3.56 mm (. sd. 2.32), respectively; p = 0.67). Future work in the design of knee prostheses should take into account the overall variability of the anatomy of the distal femur


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIX | Pages 10 - 10
1 Jul 2012
Robinson JR Singh R Artz N Murray JR Porteous AJ Williams M
Full Access

Purpose. The purpose of this study was to determine whether intra-operative identification of osseous ridge anatomy (lateral intercondylar “residents” ridge and lateral bifurcate ridge) could be used to reliably define and reconstruct individuals' native femoral ACL attachments in both single-bundle (SB) and double-bundle (DB) cases. Methods. Pre-and Post-operative 3D, surface rendered, CT reconstructions of the lateral intercondylar notch were obtained for 15 patients undergoing ACL reconstruction (11 Single bundle, 4 Double-bundle or Isolated bundle augmentations). Morphology of native ACL femoral attachment was defined from ridge anatomy on the pre-operative scans. Centre's of the ACL attachment, AM and PL bundles were recorded using the Bernard grid and Amis' circle methods. During reconstruction soft tissue was carefully removed from the lateral notch wall with RF coblation to preserve and visualise osseous ridge anatomy. For SB reconstructions the femoral tunnel was sited centrally on the lateral bifurcate ridge, equidistant between the lateral intercondylar ridge and posterior cartilage margin. For DB reconstructions tunnels were located either side of the bifurcate ridge, leaving a 2mm bony bridge. Post-operative 3D CTs were obtained within 6 weeks post-op to correlate tunnel positions with pre-op native morphology. Results. Pre-op native ACL attachment site morphology was very similar to previous in-vitro studies: the mean centre was found at 27% along Blumensaat's line (range 19-33%) and 38% the width of the lateral femoral condyle (range 31-43%). Despite the variability between individuals there was close correlation between pre-operative localization of the femoral attachment centre and position of single bundle ACL reconstructions tunnels on the post-op CT (R=0.92). Similar results were observed for double-bundle and isolated bundle augment reconstructions. Conclusion. ACL attachment site morphology varies between individuals. Intra-operative localization of the osseous landmarks (lateral intercondylar and bifurcate ridges) appears to lead to accurate, individualised anatomical tunnel placement whether using single or double-bundle reconstruction techniques


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 330 - 333
1 Mar 2008
Lankester BJA Cottam HL Pinskerova V Eldridge JDJ Freeman MAR

From a search of MRI reports on knees, 20 patients were identified with evidence of early anteromedial osteoarthritis without any erosion of bone and a control group of patients had an acute rupture of the anterior cruciate ligament. The angle formed between the extension and flexion facets of the tibia, which is known as the extension facet angle, was measured on a sagittal image at the middle of the medial femoral condyle.

The mean extension facet angle in the control group was 14° (3° to 25°) and was unrelated to age (Spearman’s rank coefficient, p = 0.30, r = 0.13). The mean extension facet angle in individuals with MRI evidence of early anteromedial osteoarthritis was 19° (13° to 26°, SD 4°). This difference was significant (Mann-Whitney U test, p < 0.001).

A wide variation in the extension facet angle was found in the normal control knees and an association between an increased extension facet angle and MRI evidence of early anteromedial osteoarthritis. Although a causal link has not been demonstrated, we postulate that a steeper extension facet angle might increase the duration of loading on the extension facet during the stance phase of gait, and that this might initiate failure of the articular cartilage.


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 817 - 825
1 Aug 2024
Borukhov I Ismailidis P Esposito CI LiArno S Lyon J McEwen PJ

Aims. This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or kinematic alignment (KA) are more biomimetic concerning trochlear sulcus orientation and restoration of trochlear height. Methods. Bone surfaces from 1,012 CT scans of non-arthritic femora were segmented using a modelling and analytics system. TKA femoral components (Triathlon; Stryker) were virtually implanted in both MA and KA. Trochlear sulcus orientation was assessed by measuring the distal trochlear sulcus angle (DTSA) in native femora and in KA and MA prosthetic femoral components. Trochlear anatomy restoration was evaluated by measuring the differences in medial, lateral, and sulcus trochlear height between native femora and KA and MA prosthetic femoral components. Results. Femoral components in both MA and KA alignments exhibited a more valgus DTSA compared to native femora. However, DTSA deviation from native was significantly less in KA than in MA (4.8° (SD 2.2°) vs 8.8° (SD 1.8°); p < 0.001). DTSA deviation from native orientation correlated positively with the mechanical lateral distal femoral angle (mLDFA) in KA and negatively in MA (r = 0.53, p < 0.001; r = -0.18, p < 0.001). Medial trochlear height was not restored with either MA or KA, with MA resulting in lower medial trochlear height than KA in the proximal 20% of the trochlea. Lateral and sulcus trochlear height was not restored with either alignment in the proximal 80% of the trochlea. At the terminal arc point, KA replicated sulcus and lateral trochlear height, while MA led to over-restoration. Conclusion. Femoral components aligned in KA demonstrated greater biomimetic qualities than those in MA regarding trochlear sulcus orientation and trochlear height restoration, particularly in valgus femora. Variability across knees was observed, warranting further research to evaluate the clinical implications of these findings. Cite this article: Bone Joint J 2024;106-B(8):817–825


Aims. Functional alignment (FA) in total knee arthroplasty (TKA) aims to achieve balanced gaps by adjusting implant positioning while minimizing changes to constitutional joint line obliquity (JLO). Although FA uses kinematic alignment (KA) as a starting point, the final implant positions can vary significantly between these two approaches. This study used the Coronal Plane Alignment of the Knee (CPAK) classification to compare differences between KA and final FA positions. Methods. A retrospective analysis compared pre-resection and post-implantation alignments in 2,116 robotic-assisted FA TKAs. The lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) were measured to determine the arithmetic hip-knee-ankle angle (aHKA = MPTA – LDFA), JLO (JLO = MPTA + LDFA), and CPAK type. The primary outcome was the proportion of knees that varied ≤ 2° for aHKA and ≤ 3° for JLO from their KA to FA positions, and direction and magnitude of those changes per CPAK phenotype. Secondary outcomes included proportion of knees that maintained their CPAK phenotype, and differences between sexes. Results. Overall, 71.6% had an aHKA change ≤ 2°, and 87.0% a JLO change ≤ 3°. Mean aHKA changed from -1.1° (SD 2.8°) in KA to -1.9° (SD 2.3°) in FA (mean difference (MD) -0.83 (SD 2.0); p < 0.001). Mean JLO changed from 173.9° (SD 3.0°) in KA to 174.2° (SD 2.6°) in FA (MD 0.38 (SD 2.3); p < 0.001). CPAK type was maintained in 58.1% of knees, with the proportion highest for Types I (73.9%), II (61.1%), and IV (51.2%). In valgus knees, 67.5% of Type III and 71.7% of Type VI were shifted to neutral phenotypes. There was minimal change to constitutional JLO across all CPAK types (MDs -2.0° to 1.2°). Conclusion. Functional alignment may alter CPAK type, but does not significantly change JLO. A kinematic starting point minimizes changes to native anatomy, while final position with FA provides an optimally balanced TKA. Cite this article: Bone Jt Open 2024;5(12):1081–1091


Bone & Joint Open
Vol. 5, Issue 2 | Pages 101 - 108
6 Feb 2024
Jang SJ Kunze KN Casey JC Steele JR Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Aims. Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length. Results. The algorithm measured 1,078 radiographs at a rate of 12.6 s/image (2,156 unique measurements in 3.8 hours). There was no significant difference or bias between reader and algorithm measurements for the FMAA (p = 0.130 to 0.563). The FMAA was 6.3° (SD 1.0°; 25% outside range of 5.0° (SD 2.0°)) using definition one and 4.6° (SD 1.3°; 13% outside range of 5.0° (SD 2.0°)) using definition two. Differences between males and females were observed using definition two (males more valgus; p < 0.001). Conclusion. We developed a rapid and accurate DL tool to quantify the FMAA. Considerable variation with different measurement approaches for the FMAA supports that patient-specific anatomy and surgeon-dependent technique must be accounted for when correcting for the FMAA using an intramedullary guide. The angle between the mechanical and anatomical axes of the femur fell outside the range of 5.0° (SD 2.0°) for nearly a quarter of patients. Cite this article: Bone Jt Open 2024;5(2):101–108


Bone & Joint Open
Vol. 3, Issue 5 | Pages 383 - 389
1 May 2022
Motesharei A Batailler C De Massari D Vincent G Chen AF Lustig S

Aims. No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model. Methods. A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data. Results. The key factors for predicting operating time were the surgeon and patient weight, followed by 12 anatomical parameters derived from CT scans. The predictive model based only on demographic data showed that 90% of predictions were within 15 minutes of actual operating time, with 73% within ten minutes. The predictive model including demographic data and CT scans showed that 94% of predictions were within 15 minutes of actual operating time and 88% within ten minutes. Conclusion. The primary factors for predicting robotic-assisted TKA operating time were surgeon, patient weight, and osteophyte volume. This study demonstrates that incorporating 3D patient-specific data can improve operating time predictions models, which may lead to improved operating room planning and efficiency. Cite this article: Bone Jt Open 2022;3(5):383–389


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 58 - 58
7 Aug 2023
Saghir R Watson K Martin A Cohen A Newman J Rajput V
Full Access

Abstract. Introduction. Knee arthroscopy can be used for ligamentous repair, reconstruction and to reduce burden of infection. Understanding and feeling confident with knee arthroscopy is therefore a highly important skillset for the orthopaedic surgeon. However, with limited training or experience, furthered by reduced practical education due to COVID-19, this skill can be under-developed amongst trainee surgeons. Methods. At a single institution, ten junior doctors (FY1 to CT2), were recruited as a part of a five, two-hour session, training programme utilising the Simbionix® ARTHRO Mentor knee arthroscopy simulator, supplemented alongside educational guidance with a consultant orthopaedic knee surgeon. All students had minimal to no levels of prior arthroscopic experience. Exercises completed included maintaining steadiness, image centering and orientation, probe triangulation, arthroscopic knee examination, removal of loose bodies, and meniscectomy. Pre and post-experience questionnaires and quantitative repeat analysis on simulation exercises were undertaken to identify levels of improvement. Results. Comparing pre and post-experience questionnaires significant improvements in levels of confidence were noted in the following domains: naming arthroscopic instruments, port positioning and insertion, recognising normal anatomy arthroscopically, holding and using arthroscopic instruments and assisting in a live theatre setting (p<0.05). Significant improvements were noted in time taken to complete, distance covered in metres and roughness of instruments used on the simulated exercises on repeat performance (p<0.05). Conclusion. With only five sessions under senior guidance, using a simulator such as the ARTHRO Mentor, significant improvements in both levels of confidence and skill can be developed even among individuals with no prior experience


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 4 - 4
7 Aug 2023
Khaleeq T Saeed AZ Ahmed U Ajula R Boutefnouchet T D'Alessandro P Malik S
Full Access

Abstract. Customised individually made implants(CIM) total knee arthroplasty(TKA) are custom-made to better fit patients native anatomy and aim to improve outcomes which can be variable with conventional off-the-shelf(OTS). A systematic review and meta-analysis was conducted searching the MEDLINE and Embase databases. Studies reporting on patient reported outcome measures, clinical or radiological outcomes were included. 23 studies satisfied the search criteria (case-control studies14, case series8, cross-sectional studies1). There were 2,856(CIM) and 1,877(OTS) implants. The overall revision-rate was higher in CIM 5.9%vs3.7%OTS [OR 1.46(95% CI 0.82–2.62)]. MUA was higher in the CIM group 2.2%vs.1.1%OTS [OR 2.95(95% CI 0.95–9.13)] and overall complications rate was also higher in the CIM group 5% vs. 4.5%OTS [OR 1.45(95% CI 0.53–3.96)]. LOS was significantly shorter in the CIM group 2.9 days vs. 3.5 days [MD −0.51(95% CI −0.82–0.20)]. Pooled analysis for KSS showed no difference between CIM and OTS groups(Knee=90.5 vs. 90.6 [MD-0.27,(95% CI −4.27–3.73)] and Function=86.1 vs. 90.6[MD 1.51 (95% CI −3.69–6.70)] component of the scores. There was no significant difference in post-operative ROM between CIM and OTS groups 117.3° vs. 115.0° [MD 0.02,(95% CI −1.70–1.74)]. CIM TKAs has theoretical benefits over OTS TKAs however in this review they were associated with higher complication, MUA and revision rates with no difference in outcome scores and no improvement in target alignment. The findings of this review does not support the use of CIM over OTS prosthesis in total knee arthroplasty


Abstract. The radiographic or bony landmark techniques are the two most common methods to determine Medial patellofemoral ligament (MPFL) femoral tunnel placement. Their intra/inter-observer reliability is widely debated. The palpation technique relies on identifying the medial epicondyle (ME) and adductor Tubercle (AT). The central longitudinal artery and associated vessels (CLV) are consistently seen in the surgical dissection during MPFL reconstruction. The aim of this study was to investigate the anatomic relationship of CLV to ME-AT and thereby use CLV as an important vascular landmark during MPFL reconstruction. A retrospective review of MRI scans in skeletally mature patients presenting to a tertiary referral knee clinic was undertaken. Group-N consisted of any presentation without patellofemoral instability or malalignment (PFI). Group-P with PFI. MRI's were reviewed and measured by two Consultant Radiologists for the CLV-ME-AT anatomy and relationship. Following exclusions 50 patients were identified in each group. The CLV passed anterior to the AT and ME in all patients. ME morphology did not differ greatly between the groups except in the tubercle height, where there was a statically but not clinically significant difference (larger in the non-PFI group, 2.95mm vs 2.52mm, p=0.002). The CLV to ME Tip distance was consistent between the groups (Group PFI group 3.8mm & ‘normal’ non-PFI Group 3.9mm). The CLV-ME-AT relationship remained consistent despite patients presenting pathology. The CLV consistently courses anterior to ME and AT. The CLV could be used as a vascular landmark assisting femoral tunnel placement during MPFL reconstruction


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative planning. The 3D US is radiation-free and offers numerous clinical opportunities for bone visualization rapidly during clinic visits, to enable preoperative planning with implant sizing. There is potential to extend its application to 3D dynamic ligament balancing, and intraoperative registration for use with robots and navigation systems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):81–86


Bone & Joint Research
Vol. 8, Issue 11 | Pages 563 - 569
1 Nov 2019
Koh Y Lee J Lee H Kim H Kang K

Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method. Methods. Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and volumetric wear under gait cycle loading conditions. Results. Conforming design inserts had the lower contact pressure and larger contact area. However, they also had the higher wear rate and volumetric wear. The improved wear performance was found with AMD inserts. In addition, the computationally predicted volumetric wear of crosslinked UHMWPE inserts was less than half that of standard UHMWPE inserts. Conclusion. Our results showed that increasing conformity may not be the sole predictor of wear performance; highly crosslinked mobile-bearing polyethylene inserts can also provide improvement in wear performance. These results provide improvements in design and materials to reduce wear in mobile-bearing UKA. Cite this article: Bone Joint Res 2019;8:563–569


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims

The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases.

Methods

Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases.


Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty for patients who require treatment of single-compartment osteoarthritis, especially for young patients. To satisfy this requirement, new patient-specific prosthetic designs have been introduced. The patient-specific UKA is designed on the basis of data from preoperative medical images. In general, knee implant design with increased conformity has been developed to provide lower contact stress and reduced wear on the tibial insert compared with flat knee designs. The different tibiofemoral conformity may provide designers the opportunity to address both wear and kinematic design goals simultaneously. The aim of this study was to evaluate wear prediction with respect to tibiofemoral conformity design in patient-specific UKA under gait loading conditions by using a previously validated computational wear method. Methods. Three designs with different conformities were developed with the same femoral component: a flat design normally used in fixed-bearing UKA, a tibia plateau anatomy mimetic (AM) design, and an increased conforming design. We investigated the kinematics, contact stress, contact area, wear rate, and volumetric wear of the three different tibial insert designs. Results. Conforming increased design showed a lower contact stress and increased contact area. In addition, increased conformity resulted in a reduction of the wear rate and volumetric wear. However, the increased conformity design showed limited kinematics. Conclusion. Our results indicated that increased conformity provided improvements in wear but resulted in limited kinematics. Therefore, increased conformity should be avoided in fixed-bearing patient-specific UKA design. We recommend a flat or plateau AM tibial insert design in patient-specific UKA. Cite this article: Y-G. Koh, K-M. Park, H-Y. Lee, K-T. Kang. Influence of tibiofemoral congruency design on the wear of patient-specific unicompartmental knee arthroplasty using finite element analysis. Bone Joint Res 2019;8:156–164. DOI: 10.1302/2046-3758.83.BJR-2018-0193.R1


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 680 - 687
1 Jul 2024
Mancino F Fontalis A Grandhi TSP Magan A Plastow R Kayani B Haddad FS

Aims

Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up.

Methods

This prospective study included 16 patients undergoing robotic arm-assisted revision of UKA to TKA versus 35 matched patients receiving robotic arm-assisted primary TKA. In all study patients, the following data were recorded: operating time, polyethylene liner size, change in haemoglobin concentration (g/dl), length of inpatient stay, postoperative complications, and hip-knee-ankle (HKA) alignment. All procedures were performed using the principles of functional alignment. At most recent follow-up, range of motion (ROM), Forgotten Joint Score (FJS), and Oxford Knee Score (OKS) were collected. Mean follow-up time was 21 months (6 to 36).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 34 - 34
1 Oct 2020
Mahfouz MR
Full Access

Introduction. The objective of this study is to assess the use of ultrasound (US) as a radiation free imaging modality to reconstruct three-dimensional knee anatomy. Methods. An OEM US system is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allowing for 3D tracking of probe and femur and tibia. The raw US RF signals are acquired and using real time signal processing, bone boundaries are extracted. Bone boundaries are then combined with the EM sensor information in a 3D point cloud for both femur and tibia. Using a statistical shape model, the patient specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was then conducted for 11 cadavers by comparing the 3D US models to those created using CT scans. Results. The results revealed the US bone models were accurate compared to the CT models (Mean RMS: femur: 1.03±0.15 mm, tibia:1.11± 0.13). Also, femoral landmarking proved to be accurate (transepicondylar axis: 1.07±0.65°, Posterior condylar axis: 0.73±0.41° Distal condylar axis: 1.12±0.89°, Medial AP: 1.39±1.18 mm, Lateral AP: 1.56±1.15 mm, TEA width: 1.2±0.87 mm). Tibial landmarking errors were slightly higher (Posterior slope axis: 2 ±1.19° and Tubercle axis: 1.8±1.37°). The models were then used to evaluate implant sizing as, 90% of the femurs and 60% of the tibias were sized correctly, while the others were off only one size. Discussion. The 3D US bone models were proven to be accurate compared to CT and can be used for preoperative planning. 3D ultrasound is radiation free and offers numerous clinical opportunities for bone creation in minutes during their office visit, surgeon-patient pre-operative planning, implant sizing and selection, 3D dynamic ligament balancing and intra-operative registration for use with robots and navigation systems


Aims

Classifying trochlear dysplasia (TD) is useful to determine the treatment options for patients suffering from patellofemoral instability (PFI). There is no consensus on which classification system is more reliable and reproducible for the purpose of guiding clinicians’ management of PFI. There are also concerns about the validity of the Dejour Classification (DJC), which is the most widely used classification for TD, having only a fair reliability score. The Oswestry-Bristol Classification (OBC) is a recently proposed system of classification of TD, and the authors report a fair-to-good interobserver agreement and good-to-excellent intraobserver agreement in the assessment of TD. The aim of this study was to compare the reliability and reproducibility of these two classifications.

Methods

In all, six assessors (four consultants and two registrars) independently evaluated 100 axial MRIs of the patellofemoral joint (PFJ) for TD and classified them according to OBC and DJC. These assessments were again repeated by all raters after four weeks. The inter- and intraobserver reliability scores were calculated using Cohen’s kappa and Cronbach’s α.