Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_9 | Pages 13 - 13
16 May 2024
Lambert L Davies M Mangwani J Molloy A Mason L
Full Access

Introduction. Anatomic reduction of talar body fractures is critical in restoring congruency to the talocrural joint. Previous studies have indicated a maximum of 25% talar body exposure without malleolar osteotomy. The aim of this study was to investigate the percentage talar body exposure when using the lateral transligamentous approach. Methods. The lateral transligamentous approach to the talus was undertaken in 10 fresh frozen cadaveric specimens by surgeons inexperienced in the approach, following demonstration of the technique. An incision was made on the anterolateral aspect of the ankle augmented by the removal of the anterior talofibular ligament (ATFL) and the calcaneofibular ligament (CFL) from their fibular insertions. A bone lever was then placed behind the lateral aspect of the talus and levered forward with the foot in equinus and inversion. The talus was disarticulated and high resolution images were taken of the talar dome surface. The images were overlain with a reproducible nine-grid division. Accessibility to each zone within the grid with a perpendicular surgical blade was documented. ImageJ software was used to calculate the surface area exposed with each approach. Results. The mean percentage area of talar dome available through the transligamentous approach was 77.3 % (95% confidence interval 73.3, 81.3). In all specimens the complete lateral talar process was accessible, along with the lateral and dorsomedial aspect of the talar neck. This approach gives complete access to Zones 1,2, 3,5 & 6 with partial access to Zones 4,8 & 9. Conclusion. The lateral transligamentous approach to the talus provides significantly greater access to the talar dome as compared to standard approaches. The residual surface area that is inaccessible with this approach is predominantly within Zone 4 and Zone 7, the posteromedial corner


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_7 | Pages 12 - 12
8 May 2024
Miller D Stephen J Calder J el Daou H
Full Access

Background. Lateral ankle instability is a common problem, but the precise role of the lateral ankle structures has not been accurately investigated. This study aimed to accurately investigate lateral ankle complex stability for the first time using a novel robotic testing platform. Method. A six degrees of freedom robot manipulator and a universal force/torque sensor were used to test 10 foot and ankle specimens. The system automatically defined the path of unloaded plantar/dorsi flexion. At four flexion angles: 20° dorsiflexion, neutral flexion, 20° and 40° of plantarflexion; anterior-posterior (90N), internal-external (5Nm) and inversion-eversion (8Nm) laxity were tested. The motion of the intact ankle was recorded first and then replayed following transection of the lateral retinaculum, Anterior Talofibular Ligament (ATFL) and Calcaneofibular Ligament (CFL). The decrease in force/torque reflected the contribution of the structure to restraining laxity. Data were analysed using repeated measures of variance and paired t-tests. Results. The ATFL was the primary restraint to anterior drawer (P< 0.01) and the CFL the primary restraint to inversion throughout range (P< 0.04), but with increased plantarflexion the ATFL's contribution increased. The ATFL had a significant role in resisting tibial external rotation, particularly at higher levels of plantarflexion, contributing 63% at 40° (P< 0.01). The CFL provided the greatest resistance to external tibial rotation, 22% at 40° plantarflexion (P< 0.01). The extensor retinaculum and skin did not offer significant restraint in any direction tested. Conclusion. This study shows accurately for the first time the significant role the ATFL and CFL have in rotational ankle stability. This significant loss in rotational stability may have implications in the aetiology of osteophyte formation and early degenerative changes in patients with chronic ankle instability. This is the first time the role of the lateral ankle complex has been quantified using a robotic testing platform


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXII | Pages 56 - 56
1 May 2012
Fursdon T Platt S
Full Access

Injuries to the lateral ligamentous complex of the ankle are common. The most commonly injured ligament is the anterior talofibular ligament (ATFL) followed by the calcaneofibular ligament (CFL). The posterior talofibular ligament (PTFL) is less commonly injured. There are few studies reporting the incidence of PTFL injury and less data available which describes the significance of this injury. We aim to establish an incidence of PTFL injury and allude to the possible significance of such an injury. Methods. A retrospective review of patient notes and magnetic resonance (MR) scans dating from September 2007 to present day was undertaken. Patients complaining of acute or chronic ankle pain, swelling, and instability were included in the study. Exclusion criteria consisted of patients that had undergone previous surgery to the ankle. Routine MR was performed on all patients with oblique axial, coronal and sagittal views taken. Results. 312 patients were included in the study. The incidence of PTFL injury was 10.9%. The PTFL never ruptured in isolation. In 12.3% of patients the PTFL had ruptured with the ATFL and in 28.6% of patients it had ruptured with the CFL. Osteochondral defects were also present in the majority of patients with PTFL failure (57.1%). Conclusion. This study confirms that the PTFL rupture is rare. It is never injured in isolation. The frequency of incidental findings in those patients with PTFL injury is high. The commonest associated injury was an osteochondral lesion of the talus. The inference of our findings is that patients with a PTFL rupture have sustained a more significant ankle injury


Bone & Joint Research
Vol. 3, Issue 8 | Pages 241 - 245
1 Aug 2014
Kanamoto T Shiozaki Y Tanaka Y Yonetani Y Horibe S

Objectives

To evaluate the applicability of MRI for the quantitative assessment of anterior talofibular ligaments (ATFLs) in symptomatic chronic ankle instability (CAI).

Methods

Between 1997 and 2010, 39 patients with symptomatic CAI underwent surgical treatment (22 male, 17 female, mean age 25.4 years (15 to 40)). In all patients, the maximum diameters of the ATFLs were measured on pre-operative T2-weighted MR images in planes parallel to the path of the ATFL. They were classified into three groups based on a previously published method with modifications: ‘normal’, diameter = 1.0 - 3.2 mm; ‘thickened’, diameter > 3.2 mm; ‘thin or absent’, diameter < 1.0 mm. Stress radiography was performed with the maximum manual force in inversion under general anaesthesia immediately prior to surgery. In surgery, ATFLs were macroscopically divided into two categories: ‘thickened’, an obvious thickened ligament and ‘thin or absent’. The imaging results were compared with the macroscopic results that are considered to be of a gold standard.


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 874 - 883
1 Jul 2016
Ballal MS Pearce CJ Calder JDF

Sporting injuries around the ankle vary from simple sprains that will resolve spontaneously within a few days to severe injuries which may never fully recover and may threaten the career of a professional athlete. Some of these injuries can be easily overlooked altogether or misdiagnosed with potentially devastating effects on future performance. In this review article, we cover some of the common and important sporting injuries involving the ankle including updates on their management and outcomes.

Cite this article: Bone Joint J 2016;98-B:874–83.