Aims. Approximately 10% to 20% of knee arthroplasty patients are not satisfied with the result, while a clear indication for revision surgery might not be present. Therapeutic options for these patients, who often lack adequate quadriceps strength, are limited. Therefore, the primary aim of this study was to evaluate the clinical effect of a novel rehabilitation protocol that combines low-load resistance training (LL-RT) with blood flow restriction (BFR). Methods. Between May 2022 and March 2024, we enrolled 45 dissatisfied knee arthroplasty patients who lacked any clear indication for revision to this prospective cohort study. All patients were at least six months post-surgery and had undergone conventional physiotherapy previously. The patients participated in a supervised LL-RT combined with
Introduction and Aim. Quadriceps strength is crucial for physical function in patients with knee osteoarthritis (KOA). This study aimed to investigate the effect of combining blood flow restriction (BFR) with low-intensity training (LIT) on quadricep strength in patients with advanced KOA. Methods. Patients with advanced KOA were block randomized by gender into the control or
Abstract. Source of Study: London, United Kingdom. This intervention study was conducted to assess two developing protocols for quadriceps and hamstring rehabilitation: Blood Flow Restriction (BFR) and Neuromuscular Electrical Stimulation Training (NMES).
7–20 % of the patients with a total knee arthroplasty (TKA) are dissatisfied without an indication for revision. Therapeutic options for this patient population with mostly a lack of quadriceps strength are limited. The purpose of this study is to evaluate the effect of six weeks low load resistance training with blood flow restriction (BFR) on the clinical outcome in these unhappy TKA patients. Thirty-one unhappy TKA patients (of the scheduled fifty patients) without mechanical failure were included in this prospective study since 2022. The patients participate in a supervised resistance training combined with
The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model. In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties.Aims
Methods
Bones can adapt in response to mechanical stimuli; higher rates of loading have been associated with greater bone formation rates. This study determined where bone accretion was localized in response to high loading rates. Non-invasive loads were applied to mice tibiae at one of three rates for four week. It was found, via calcein labels, that adaptation on the periosteal, but not endosteal, surface exhibited a dose-response relation with loading rate; periosteal and endosteal adaptation was localized to regions of high strain gradients. Understanding the stimuli bone responds to may underpin the development of non-pharmacological treatments to enhance bone mass. Bones can adapt to mechanical stimuli; higher rates of loading have been linked with greater bone formation rates (BFR). The purpose of this research was to determine if bone accretion associated with higher loading rates occurs in regions of high strain gradients or strain rates and if adaptation is similar on periosteal and endosteal surfaces. Periosteal but not endosteal surfaces displayed a dose-response relation with loading rate. Adaptation on both periosteal and endosteal surfaces was localized to sectors with high strain gradients. Understanding the precise stimuli by which bone responds may underpin the development of non-pharmacological treatments to enhance bone mass. Tibia loaded at the high rate had significantly greater periosteal
Little is known about tissue changes underlying bone marrow lesions (BMLs) in non-weight-bearing joints with osteoarthritis (OA). Our aim was to characterize BMLs in OA of the hand using dynamic histomorphometry. We therefore quantified bone turnover and angiogenesis in subchondral bone at the base of the thumb, and compared the findings with control bone from hip OA. Patients with OA at the base of the thumb, or the hip, underwent preoperative MRI to assess BMLs, and tetracycline labelling to determine bone turnover. Three groups were compared: trapezium bones removed by trapeziectomy from patients with thumb base OA (n = 20); femoral heads with (n = 24); and those without (n = 9) BMLs obtained from patients with hip OA who underwent total hip arthroplasty.Objectives
Methods
We investigated the effect of stimulation with a pulsed electromagnetic field on the osseointegration of hydroxyapatite in cortical bone in rabbits. Implants were inserted into femoral cortical bone and were stimulated for six hours per day for three weeks. Electromagnetic stimulation improved osseointegration of hydroxyapatite compared with animals which did not receive this treatment in terms of direct contact with the bone, the maturity of the bone and mechanical fixation. The highest values of maximum push-out force (Fmax) and ultimate shear strength (σu) were observed in the treated group and differed significantly from those of the control group at three weeks (Fmax; p <
0.0001; σu, p <
0.0005).
Carbonate-substituted hydroxyapatite (CHA) is more osteoconductive and more resorbable than hydroxyapatite (HA), but the underlying mode of its action is unclear. We hypothesised that increased resorption of the ceramic by osteoclasts might subsequently upregulate osteoblasts by a coupling mechanism, and sought to test this in a large animal model. Defects were created in both the lateral femoral condyles of 12 adult sheep. Six were implanted with CHA granules bilaterally, and six with HA. Six of the animals in each group received the bisphosphonate zoledronate (0.05 mg/kg), which inhibits the function of osteoclasts, intra-operatively. After six weeks bony ingrowth was greater in the CHA implants than in HA, but not in the animals given zoledronate. Functional osteoclasts are necessary for the enhanced osteoconduction seen in CHA compared with HA.