Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 22 - 22
1 Dec 2019
Veloso M Bernaus M Angles F Gómez L Cubillos YL Soto S Font-Vizcarra L
Full Access

Aim. To evaluate bacterial adhesion and biofilm formation to metallic cerclage wire versus polymer cerclage system (SuperCable®). Methods. Experimental in vitro study to evaluate quantitative bacterial adherence to different cerclage wire materials. Two types of cerclage wires were compared: a metallic versus a polymer based wire (SuperCable®). A two-centimeter cerclage wire piece of each material was included in 2 mL of tryptic soy broth (TSB) culture media, inoculated with 10 microliters of a 0.5 McFarland of a Staphylococcus epidermidis strain and cultivated at 37°C during 2h for adhesion and 48h for biofilm formation. After this time, the cerclages were washed using a 1% phosphate buffered saline (PBS) and sonicated in new culture medium. After sonication, dilutions of each culture were spread in TSB agar and incubated 37°C during 24h. The number of colonies were counted and the cfu/cm2 was calculated. Results. There were no differences in the number of colonies counted at 2 hours. At 48 hours, the polymer cerclage system showed a clinically and statistically reduction of 95.2% in the biofilm formation of S. epidermidis. The highest bacterial counts were observed in metallic cerclages after 48h. Conclusion. In in vitro conditions, the polymer cerclage system may offer decreased biofilm formation compared with metallic cerclage wires. However, there are many other factors in in vivo conditions that could play a role in bacterial adhesion to cerclage wires. Further research is needed in order to recommend the use of polymer cerclage systems for septic revision surgery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 30 - 30
24 Nov 2023
van Hoogstraten S Samijo S Geurts J Arts C
Full Access

Aim. Prosthetic joint infections pose a major clinical challenge. Developing novel material surface technologies for orthopedic implants that prevent bacterial adhesion and biofilm formation is essential. Antimicrobial coatings applicable to articulating implant surfaces are limited, due to the articulation mechanics inducing wear, coating degradation, and toxic particle release. Noble metals are known for their antimicrobial activity and high mechanical strength and could be a viable coating alternative for orthopaedic implants [1]. In this study, the potential of thin platinum-based metal alloy coatings was developed, characterized, and tested on cytotoxicity and antibacterial properties. Method. Three platinum-based metal alloy coatings were sputter-coated on medical-grade polished titanium discs. The coatings were characterized using optical topography and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS). Ion release was measured using inductively coupled plasma optical emission spectrometry (ICP-OES). Cytotoxicity was tested according to ISO10993-5 using mouse fibroblasts (cell lines L929 and 3T3). Antibacterial surface activity, bacterial adhesion, bacterial proliferation, and biofilm formation were tested with gram-positive Staphylococcus aureus ATCC 25923 and gram-negative Escherichia coli ATCC 25922. Colony forming unit (CFU) counts, live-dead fluorescence staining, and SEM-EDS images were used to assess antibacterial activity. Results. Three different platinum-based metal alloys consisting of platinum-iridium, platinum-copper, and platinum-zirconium. The coatings were found 80 nm thick, smooth (roughness average < 60 nm), and non-toxic. The platinum-copper coating showed a CFU reduction larger than one logarithm in adherent bacteria compared to uncoated titanium. The other coatings showed a smaller reduction. This data was confirmed by SEM and live-dead fluorescence images, and accordingly, ICP-OES measurements showed low levels of metal ion release from the coatings. Conclusions. The platinum-copper coating showed low anti-adhesion properties, even with extremely low metal ions released. These platinum-based metal alloy coatings cannot be classified as antimicrobial yet. Further optimization of the coating composition to induce a higher ion release based on the galvanic principle is required and copper looks most promising as the antimicrobial compound of choice. Acknowledgments. This publication is supported by the DARTBAC project (with project number NWA.1292.19.354) of the research program NWA-ORC which is (partly) financed by the Dutch Research Council (NWO); and the AMBITION project (with project number NSP20–1-302), co-funded by the PPP Allowance made available by Health-Holland, Top Sector Life Sciences & Health to ReumaNederland


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 28 - 28
1 Dec 2017
Bortolin M Bidossi A Toscano M De Vecchi E Romanò CL Mattina R Drago L
Full Access

Aim. Biofilm-related infections represent a recurrent problem in the orthopaedic setting. In recent years, great interest was directed towards the identification of novel molecules capable to interfere with pathogens adhesion and biofilm formation on implant surfaces. In this study, two stable forms of α-tocopherol, the hydrophobic acetate ester and the water-soluble phosphate ester, were tested in vitro as coating for titanium prostheses. Method. Antimicrobial activity against microorganisms responsible of prosthetic and joints infections was assessed by broth microdilution method. In addition, α-tocopherol esters were evaluated for both their ability to hamper bacterial adhesion and biofilm formation on sandblasted titanium surfaces. Results. Only α-tocopheryl phosphate displayed antimicrobial activity against the tested strains. Both esters were able to significantly interfere with bacterial adhesion and to prevent biofilm formation, especially by Staphylococcus aureus and Staphylococcus epidermidis. The activity of α-tocopheryl phosphate was greater than that of α-tocopheryl acetate. Alterations at membrane levels have been reported in literature1 and may be likely responsible for the interference on bacterial adhesion and biofilm formation shown by α-tocopherol esters. Conclusions. Although further studies are needed to better investigate the mechanisms of action and the spectrum of activity of α-tocopherol esters, these characteristics, together with the positive effect on wound healing and immune response, make these molecules promising candidate for coating in order to prevent implant-associated infections


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 28 - 28
24 Nov 2023
De Vecchi E Balzano V Bottagisio M Gavioli L
Full Access

Aim. Antibacterial activity of coatings based on metal and metal oxide nanoparticles (NPs) often depends on materials and biotic targets resulting in a material-specific killing activity of selected Gram-positive and Gram-negative bacteria, including drug-resistant strains. In this perspective, the NPs loading amount, the relative elemental concentration inside the nanogranular building blocks and the deposition method are of paramount importance when the goal is to widen the antimicrobial spectrum, but at the same time to avoid high levels of metal content to limit undesired toxic effects. Aim of the present study was evaluation of the antimicrobial properties of two multielement nanogranular coatings composed of Titanium-Silver and Copper and of Magnesium-Silver and Copper. Method. Ti-Ag-Cu and Mg-Ag-Cu NPs were deposited on circular cover glasses (VWR) by Supersonic Cluster Beam Deposition. Biofilm-producer strains of Staphylococcus aureus (methicillin susceptible and resistant), Staphylococcus epidermidis (methicillin susceptible and resistant), Escherichia coli (fully susceptible and producer of extended spectrum beta lactamases), and Pseudomonas aeruginosa (susceptible and multidrug-resistant) were selected. The abilities of the selected strains to adhere, colonize and produce biofilm on the discs coated with Ti-Ag-Cu or Mg-Ag-Cu NPs were compared to uncoated circular cover glasses which were used as growth control. Cytotoxicity was also evaluated in order to assess the biocompatibility of the newly synthesized NPs. Results. In comparison to uncoated controls, both coatings showed significant anti-adhesive properties against S. aureus, S. epidermidis, and E. coli. Reduction in adhesion to Mg-Ag-Cu coated discs was observed also for P. aeruginosa isolates, although differences vs uncoated controls did not reach statistical significance. Biofilm formation was reduced on discs coated with Mg-Ag-Cu compared to Ti-Ag-Cu and, again, coatings had a milder effect on P. aeruginosa, probably due to its exceptional capability of attachment and matrix production. These results were confirmed by the evaluation of bacterial colonization on nanoparticles-coated discs by means of confocal laser scanning microscopy. A viability of 95.8% and 89.4% of cells cultured in the presence of Ti-Ag-Cu and Mg-Ag-Cu discs, respectively, when compared to negative controls was observed, thus excluding cytotoxic effects on eukaryotic cells. Conclusions. The newly synthesized Ti-Ag-Cu and Mg-Ag-Cu coatings are able to limit bacterial adhesion colonization and biofilm production, thus highlighting the safe use of multi-element families of NPs as new strategies against bacterial attachment to the surface of biomedical implants. However, further studies addressing activity against P. aeruginosa and including a wide number of isolates are warranted


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 80 - 80
1 Dec 2016
Malizos K Capuano N Mezzoprete R D'Arienzo M Van Der Straeten C Drago L Romanò C
Full Access

Aim. Infection remains among the first reasons of failure of joint prosthesis. According to various preclinical reports, antibacterial coatings of implants may prevent bacterial adhesion and biofilm formation. Aim of this study is to present the first clinical trial on an antibiotic-loaded fast-resorbable hydrogel coating. *. , in patients undergoing hip or knee prosthesis. Method. In this multi-center, randomized, prospective, study, a total of 380 patients, scheduled to undergo primary or revision total hip or knee joint replacement, using a cementless or a hybrid implant, were randomly assigned, in six European orthopedic centers, to receive the antibiotic-loaded DAC coating or to a control group, without coating. Pre- and post-operative assessment of clinical scores, wound healing, laboratory tests and x-ray were performed at fixed time intervals. Results. Overall 373 patients were available at a minimum follow-up of 6 months (maximum 24 months). On average, wound healing, laboratory tests and radiographic findings did not show any significant difference between the two-groups. Eleven early surgical site infections (6%) were observed in the control group, compared to one (0.6%) in the treated group (p=0.003). No local or systemic side effects related to DAC hydrogel coating were observed and no detectable interference with implant osteointegration was noted. Conclusions. The use of a fast-resorbable, antibiotic-loaded hydrogel implant coating provides a reduced rate of early surgical site infections after hip or knee joint replacement using cementless or hybrid implants, without any detectable adverse event or side effects


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 116 - 116
1 Apr 2019
Bock R Pezzotti G Zhu W Marin E Rondinella A Boschetto F McEntire B Bal BS
Full Access

Introduction. Support of appositional bone ingrowth and resistance to bacterial adhesion and biofilm formation are preferred properties for biomaterials used in spinal fusion surgery. Although polyetheretherketone (PEEK) is a widely used interbody spacer material, it exhibits poor osteoconductive and bacteriostatic properties. In contrast, monolithic silicon nitride (Si. 3. N. 4. ) has shown enhanced osteogenic and antimicrobial behavior. Therefore, it was hypothesized that incorporation of Si. 3. N. 4. into a PEEK matrix might improve upon PEEK's inherently poor ability to bond with bone and also impart resistance to biofilm formation. Methods. A PEEK polymer was melted and compounded with three different silicon nitride powders at 15% (by volume, vol.%), including: (i) α-Si. 3. N. 4. ; (ii) a liquid phase sintered (LPS) ß-Si. 3. N. 4. ; and (iii) a melt-derived SiYAlON mixture. These three ceramic powders exhibited different solubilities, polymorphic structures, and/or chemical compositions. Osteoconductivity was assessed by seeding specimens with 5 × 10. 5. /ml of SaOS-2 osteosarcoma cells within an osteogenic media for 7 days. Antibacterial behavior was determined by inoculating samples with 1 × 10. 7. CFU/ml of Staphylococcus epidermidis (S. epi.) in a 1 × 10. 8. /ml brain heart infusion (BHI) agar culture for 24 h. After staining with PureBlu™ Hoechst 33342 or with DAPI and CFDA for SaOS-2 cell adhesion or bacterial presence, respectively, samples were examined with a confocal fluorescence microscope using a 488 nm Krypton/Argon laser source. Images were also acquired using a FEG-SEM in secondary and backscattered modes on gold sputter-coated specimens (∼20–30Å). Hydroxyapatite (HAp) deposition was measured using a laser microscope. Raman spectra were collected for samples in backscattering mode using a triple monochromator using a 532 nm excitation source (Nd:YVO. 4. diode-pumped solid-state laser). Results. PEEK composites with 15 vol.% α-Si. 3. N. 4. , LPS ß-Si. 3. N. 4. , or the SiYAlON mixture showed significantly greater SaOS-2 cell proliferation (>600%, p<0.003, cf., Fig. 1(a)) and HAp deposition (>100%, p<0.003, cf., Fig. 1(b)) relative to monolithic PEEK. The largest increase in cell proliferation was observed with the SiYAlON composite, while the greatest amount of HAp was found on the LPS ß-Si. 3. N. 4. composite. Following exposure to S. epidermidis, the composite containing the LPS β-Si. 3. N. 4. powder showed one order of magnitude reduction in adherent live bacteria (p<0.003, cf., Fig. 1(c)) as compared to the PEEK monolith. It is interesting to note that the composite containing α-Si. 3. N. 4. exhibited the worst bacterial resistance (i.e., ∼100% higher than monolithic PEEK), suggesting that the bacteriostatic effectiveness of Si. 3. N. 4. bioceramics is apparently dependent upon the presence of selective sintering additives, viz. yttria and alumina. Conclusions. The addition of 15 wt.% of specific Si. 3. N. 4. powders to PEEK showed enhanced SaOS-2 cell adhesion, proliferation, and HAp deposition when compared to monolithic PEEK. These same composites also showed resistance to S. epi. adhesion and biofilm formation.. Although improvements in osteoconductivity have been previously observed by compounding or coating PEEK with HAp, titanium, or tantalum, these approaches did not provide anti-microbial properties. Compounding PEEK with Si. 3. N. 4. represents a significant advancement due to its ability to provide both improved bone apposition and resistance to biofilm formation. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 209 - 209
1 Sep 2012
Fölsch C Khalilpour P Sagnak E
Full Access

Bacterial contamination of endoprostheses especially in revision surgery is an upcoming problem according to increasing number of joint replacements. Early adherence of bacteria producing a biofilm is difficult to treat. Silver coating of implants offers the opportunity to avoid bacterial adhesions acting against all relevant bacteria causing infections on the implant. We developed a new technique of nano-silver coating using elemental silver covered with SiOxCy whose thickness can be varied determing duration of the coating on the implant. The SiOxCy and silver is completely soluble at least at 3 months. The silver coatings used so far are measuring at least 10um and they are not soluble making a cementless implantation of the endoprostheses impossible. The aim of this study was to test the compatibility of the new combined coating with human osteoblastic cells. The test was carried out with fHOB 1.19 (ATCCR CRL-11372TM). The cells were cultivated in 1:1 mixture of DMEM/Ham's F12 with usual supplements. The protein content was measured colourimetrically using BCA reagents and staining of the cells was done with XTT-reagent (Roche). The cells were incubated on Titanium and PEEK with and without coating for 2,6,16 and 48 hours. No adverse effects of the silver coating on the early cell adhesion at 2 and 6 hours and the further proliferation at 16 and 48 hours were observed. The adhesion on Titanium showed no significant difference against coated Titanium but an improvement of cell adhesion was seen on coated PEEK. This soluble silver coating did not negatively influence human osteoblastic cells. As the complete surfacing is soluble it might be possible to combine early protection against bacteria and osseous integration. An animal study is in progress verifying the in vitro results. It should investigate the maximum duration of the coating on the implant not disturbing osseous integration


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 146 - 146
1 Feb 2017
McEntire B Jones E Bock R Ray D Bal B Pezzotti G
Full Access

Introduction. Periprosthetic infections are leading causes of revision surgery resulting in significant increased patient comorbidities and costs. Considerable research has targeted development of biomaterials that may eliminate implant-related infections. 1. This in vitro study was developed to compare biofilm formation on three materials used in spinal fusion surgery – silicon nitride, PEEK, and titanium – using one gram-positive and one gram-negative bacterial species. Materials and Methods. Several surface treated silicon nitride (Si. 3. N. 4. , MC2. ®. , Amedica Corporation, Salt Lake City, UT), poly-ether-ether-ketone (PEEK, ASTM D6262), and medical grade titanium (Ti6Al4V, ASTM F136) discs Ø12.7 × 1mm were prepared or acquired for use in this well-plate study. Each group of discs (n=3) were ultrasonically cleaned, UV-sterilized, inoculated with 10. 5. Staphylococcus epidermidis (ATCC. ®. 25922™) or Escherichia coli (ATCC. ®. 14990™) and placed in a culture medium of phosphate buffered saline (PBS) containing 7% glucose and 10% human plasma on a shaking incubator at 37°C and 120 rpm for 24 or 48 hrs. Coupons were retrieved, rinsed in PBS to remove planktonic bacteria, placed in a centrifuge with fresh PBS, and vortexed. The bacterial solutions were serially diluted, plated, and incubated at 37°C for 24 to 48 hrs. Colony forming units (CFU/mm. 2. ) were counted using applicable dilution factors and surface areas. A two-tailed, heteroscedastic Student's t-test (95% confidence) was used to determine statistical significance. Results. Biofilm adhesion results are provided in Figures 1 and 2 for S. epi. and E. coli, respectively. For S. epi. at 24 hrs, biofilm growth on PEEK was about three orders of magnitude greater than on Ti6Al4V or any Si. 3. N. 4. material (all p<0.005). Ti6Al4V also had more bacteria than the Si. 3. N. 4. samples, but was only significant for as-fired and nitrogen-annealed treatments. Similar trends and significance for S. epi. were observed at 48 hrs. For E. coli, biofilm formation on PEEK was significantly greater than all other materials at both 24 and 48 hrs. Bacterial growth on Ti6Al4V was also statistically greater than all Si. 3. N. 4. conditions, with the possible exception of nitrogen-annealed Si. 3. N. 4. By 48 hrs, PEEK remained 2 orders of magnitude above Ti6Al4V, and 2.5–3 orders of magnitude greater than the Si. 3. N. 4. conditions. Ti6Al4V was also significantly greater than all of the Si. 3. N. 4. treatments at 48 hrs. Discussion. Si. 3. N. 4. , PEEK, and Ti6Al4V surfaces demonstrated significant differences in bacterial adhesion and proliferation for both gram-positive S. epi. and gram-negative E. coli, particularly at 48 hrs post-inoculation. The various Si. 3. N. 4. samples showed the most favorable bacterial resistance for both species tested. The exact mechanism of the bacteriostatic behavior of Si. 3. N. 4. is still under investigation; but it may result from chemical interaction with the material's surface to form peroxynitrite (a powerful oxidative agent). 2. Conclusion. Identifying biomaterial surfaces that resist biofilm adhesion is an important emerging strategy in addressing implant-related infections. Si. 3. N. 4. is a new biomaterial with the apparent potential to suppress biofilm formation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 80 - 80
1 May 2016
Trampuz A Maiolo E Winkler T Perka C
Full Access

Background. The main reasons for hip prosthesis failure are aseptic loosening and periprosthetic joint infection (PJI). The real frequency of PJI is probably largely underestimated because of non-standardized definition criteria, diagnostic procedure, treatment algorithm and other confounders. Therefore, data from joint registries are not reflecting the frequency of PJI and can be misleading; particularly low-grade PJI can be frequently misdiagnosed as aseptic failure. Therefore, prospective clinical studies with standardized protocol, comprehensive diagnostic procedure and sufficient follow-up should be performed. Sonication of explanted prosthesis is highly sensitive for detection of biofilms on prosthetic surface and allows quantitative analysis of biofilm formation. We hypothesize that by using sonication, ceramic components (BIOLOX®delta, BIOLOX®forte) will show higher resistance against biofilm adhesion compared to polyethylene (PE) and metal (CoCrMo). Methods. In this prospective multicentre study (level of evidence: Ia), we included all consecutive adults ≥18 years of age, who underwent explantation of the hip prosthesis for infection or aseptic reason. Excluded were patients in whom part of the prosthetic components were retained. A standardized and comprehensive diagnostic algorithm was applied, including sonication of all removed prosthetic components for qualitative and quantitative microbiological analysis (ultrasound bath 40 kHz, 1 W/cm2, 1 min). Individual components (metal, PE, ceramic) were separately placed in sterile boxes for investigation. All patients were simultaneously included in the European Prosthetic joint infection cohort (EPJIC, . www.epjic.org. ) to ensure long-term follow-up. Results. Up to date, 79 patients were included, of whom 47 (60%) were diagnosed with aseptic failure and 32 (40%) with PJI. Mean age was 73 years (27–87 years), 32 (41%) were males. Table 1 summarizes the demographic characteristics. In 32 patients with PJI, most frequently isolated organisms were coagulase-negative staphylococci (n=12, 38%), Staphylococcus aureus (n=7, 22%) and Propionibacterium acnes (n=4, 13%), followed by enterococci (n=2; 6%) and gram-negative bacilli (n=2; 6%); 2 infections (6%) were polymicrobial and 3 were culture-negative (9%). Table 2 summarizes the microbiological results from sonication of removed components. Causative microorganism could be detected in sonication fluid from polyethylene in 100%, from metal in 92% and from ceramic in 69%. Significantly lower bacterial counts expressed as colony-forming units (CFU) were detected in sonication fluid from ceramic components (230 CFU/ml) than from PE (6’250 CFU/ml) and metal components (5’870 CFU / ml) (p < 0.01). Conclusions. These first results support the hypothesis that significantly less biofilm biomass is formed on ceramic surface, compared to PE and metal surfaces, potentially indicating higher ceramic “resistance” against bacterial adhesion. These findings should be confirmed with non-microbiological investigation such as imaging (fluorescent in situ hybridization, confocal laser scanning or electron microscopy). Furthermore, in 6 of 32 patients (19%) with PJI, an aseptic loosening was preoperatively suspected. Infection was found only by systematic application of an optimized diagnostic method, particularly sonication of the removed implant. Final study results are expected to be available by the end of 2016


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 144 - 144
1 Sep 2012
Perez-Jorge C Perez-Tanoira R Arenas M Matykina E Conde A Gomez-Barrena E
Full Access

INTRODUCTION. Biomaterial-related infections are an important complication in orthopaedic surgery [1], and Staphylococcus sp. accounts for more than half of the prosthetic joint infection cases [2]. Adhesion of bacteria to biomaterial surfaces is a key step in pathogenesis of such infections [3]. Titanium alloys are widely used in orthopaedic implants because their biocompatibility [4]. Surface incorporation of ions with antimicrobial properties, like fluorine, is one strategy previously studied with good results [5]. MATERIAL AND METHODS. A 18mm diameter rod of Ti–6Al–4V alloy ELI grade according to the standard ASTMF136-02 supplied by SURGIVAL was cut into 2 mm thick disk specimens, ground through successive grades of SiC paper to 1200 grade, degreased with a conventional detergent and rinsed in tap water followed by deionised water. The specimens were then chemically polished (CP). The disks were anodized only on one side by using a two electrode cell in a suitable electrolyte. TiO. 2. barrier layers, without fluoride (BL), were produced by anodizing in 1 M H. 2. SO. 4. at 15 mA cm-2 to 90 V, reaching 200 nm of thickness. Fluoride barrier layers (FBL) were produced in an electrolyte containing 1 M NH. 4. H. 2. PO. 4. and 0.15 M NH. 4. F, at constant voltage controlled at 20 V for 120 min at 20°C; the thickness of the layer is 140 nm. Laboratory biofilm-forming strains of Staphylococcus aureus 15981 [6] and Staphylococcus epidermidis ATCC 35984 were used in adherence studies, which were performed using the protocol by Kinnari et al [7]. Photographs obtained were studied by ImageJ software. Statistical analysis was performed by EPI-INFO software. The experiments were performed in triplicates. RESULTS. Lower adherence was detected when compared FBL with unmodified controls (CP and BL). A statistical significant difference (p<0.01) was detected in the adhesion to modified material between both species, being the adherence of S. aureus lower than that of S. epidermidis (Figure 1). DISCUSSION & CONCLUSIONS. There is currently a discussion about the actual antibacterial properties of fluorine when incorporated in biomaterial surfaces. In this study we have demonstrated that both S. aureus and S. epidermidis strains showed a decrease of bacterial adhesion to modified surfaces with fluorine, a decrease that cannot be due to other surface modifications. Further studies, including adhesion studies with clinical strains [8], must be performed to confirm these results, which can lead to the development of new materials with a potential use in orthopaedic surgery


The Bone & Joint Journal
Vol. 97-B, Issue 9 | Pages 1162 - 1169
1 Sep 2015
George DA Gant V Haddad FS

The number of arthroplasties being undertaken is expected to grow year on year, and periprosthetic joint infections will be an increasing socioeconomic burden. The challenge to prevent and eradicate these infections has resulted in the emergence of several new strategies, which are discussed in this review.

Cite this article: Bone Joint J 2015;97-B:1162–9.


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 582 - 589
1 May 2015
Brennan SA Ní Fhoghlú C Devitt BM O’Mahony FJ Brabazon D Walsh A

Implant-associated infection is a major source of morbidity in orthopaedic surgery. There has been extensive research into the development of materials that prevent biofilm formation, and hence, reduce the risk of infection. Silver nanoparticle technology is receiving much interest in the field of orthopaedics for its antimicrobial properties, and the results of studies to date are encouraging. Antimicrobial effects have been seen when silver nanoparticles are used in trauma implants, tumour prostheses, bone cement, and also when combined with hydroxyapatite coatings. Although there are promising results with in vitro and in vivo studies, the number of clinical studies remains small. Future studies will be required to explore further the possible side effects associated with silver nanoparticles, to ensure their use in an effective and biocompatible manner. Here we present a review of the current literature relating to the production of nanosilver for medical use, and its orthopaedic applications.

Cite this article: Bone Joint J 2015; 97-B:582–9.