Aim. To evaluate
Aim. Prosthetic joint infections pose a major clinical challenge. Developing novel material surface technologies for orthopedic implants that prevent
Aim. Biofilm-related infections represent a recurrent problem in the orthopaedic setting. In recent years, great interest was directed towards the identification of novel molecules capable to interfere with pathogens adhesion and biofilm formation on implant surfaces. In this study, two stable forms of α-tocopherol, the hydrophobic acetate ester and the water-soluble phosphate ester, were tested in vitro as coating for titanium prostheses. Method. Antimicrobial activity against microorganisms responsible of prosthetic and joints infections was assessed by broth microdilution method. In addition, α-tocopherol esters were evaluated for both their ability to hamper
Aim. Antibacterial activity of coatings based on metal and metal oxide nanoparticles (NPs) often depends on materials and biotic targets resulting in a material-specific killing activity of selected Gram-positive and Gram-negative bacteria, including drug-resistant strains. In this perspective, the NPs loading amount, the relative elemental concentration inside the nanogranular building blocks and the deposition method are of paramount importance when the goal is to widen the antimicrobial spectrum, but at the same time to avoid high levels of metal content to limit undesired toxic effects. Aim of the present study was evaluation of the antimicrobial properties of two multielement nanogranular coatings composed of Titanium-Silver and Copper and of Magnesium-Silver and Copper. Method. Ti-Ag-Cu and Mg-Ag-Cu NPs were deposited on circular cover glasses (VWR) by Supersonic Cluster Beam Deposition. Biofilm-producer strains of Staphylococcus aureus (methicillin susceptible and resistant), Staphylococcus epidermidis (methicillin susceptible and resistant), Escherichia coli (fully susceptible and producer of extended spectrum beta lactamases), and Pseudomonas aeruginosa (susceptible and multidrug-resistant) were selected. The abilities of the selected strains to adhere, colonize and produce biofilm on the discs coated with Ti-Ag-Cu or Mg-Ag-Cu NPs were compared to uncoated circular cover glasses which were used as growth control. Cytotoxicity was also evaluated in order to assess the biocompatibility of the newly synthesized NPs. Results. In comparison to uncoated controls, both coatings showed significant anti-adhesive properties against S. aureus, S. epidermidis, and E. coli. Reduction in adhesion to Mg-Ag-Cu coated discs was observed also for P. aeruginosa isolates, although differences vs uncoated controls did not reach statistical significance. Biofilm formation was reduced on discs coated with Mg-Ag-Cu compared to Ti-Ag-Cu and, again, coatings had a milder effect on P. aeruginosa, probably due to its exceptional capability of attachment and matrix production. These results were confirmed by the evaluation of bacterial colonization on nanoparticles-coated discs by means of confocal laser scanning microscopy. A viability of 95.8% and 89.4% of cells cultured in the presence of Ti-Ag-Cu and Mg-Ag-Cu discs, respectively, when compared to negative controls was observed, thus excluding cytotoxic effects on eukaryotic cells. Conclusions. The newly synthesized Ti-Ag-Cu and Mg-Ag-Cu coatings are able to limit
Aim. Infection remains among the first reasons of failure of joint prosthesis. According to various preclinical reports, antibacterial coatings of implants may prevent
Introduction. Support of appositional bone ingrowth and resistance to
Bacterial contamination of endoprostheses especially in revision surgery is an upcoming problem according to increasing number of joint replacements. Early adherence of bacteria producing a biofilm is difficult to treat. Silver coating of implants offers the opportunity to avoid
Introduction. Periprosthetic infections are leading causes of revision surgery resulting in significant increased patient comorbidities and costs. Considerable research has targeted development of biomaterials that may eliminate implant-related infections. 1. This in vitro study was developed to compare biofilm formation on three materials used in spinal fusion surgery – silicon nitride, PEEK, and titanium – using one gram-positive and one gram-negative bacterial species. Materials and Methods. Several surface treated silicon nitride (Si. 3. N. 4. , MC2. ®. , Amedica Corporation, Salt Lake City, UT), poly-ether-ether-ketone (PEEK, ASTM D6262), and medical grade titanium (Ti6Al4V, ASTM F136) discs Ø12.7 × 1mm were prepared or acquired for use in this well-plate study. Each group of discs (n=3) were ultrasonically cleaned, UV-sterilized, inoculated with 10. 5. Staphylococcus epidermidis (ATCC. ®. 25922™) or Escherichia coli (ATCC. ®. 14990™) and placed in a culture medium of phosphate buffered saline (PBS) containing 7% glucose and 10% human plasma on a shaking incubator at 37°C and 120 rpm for 24 or 48 hrs. Coupons were retrieved, rinsed in PBS to remove planktonic bacteria, placed in a centrifuge with fresh PBS, and vortexed. The bacterial solutions were serially diluted, plated, and incubated at 37°C for 24 to 48 hrs. Colony forming units (CFU/mm. 2. ) were counted using applicable dilution factors and surface areas. A two-tailed, heteroscedastic Student's t-test (95% confidence) was used to determine statistical significance. Results. Biofilm adhesion results are provided in Figures 1 and 2 for S. epi. and E. coli, respectively. For S. epi. at 24 hrs, biofilm growth on PEEK was about three orders of magnitude greater than on Ti6Al4V or any Si. 3. N. 4. material (all p<0.005). Ti6Al4V also had more bacteria than the Si. 3. N. 4. samples, but was only significant for as-fired and nitrogen-annealed treatments. Similar trends and significance for S. epi. were observed at 48 hrs. For E. coli, biofilm formation on PEEK was significantly greater than all other materials at both 24 and 48 hrs. Bacterial growth on Ti6Al4V was also statistically greater than all Si. 3. N. 4. conditions, with the possible exception of nitrogen-annealed Si. 3. N. 4. By 48 hrs, PEEK remained 2 orders of magnitude above Ti6Al4V, and 2.5–3 orders of magnitude greater than the Si. 3. N. 4. conditions. Ti6Al4V was also significantly greater than all of the Si. 3. N. 4. treatments at 48 hrs. Discussion. Si. 3. N. 4. , PEEK, and Ti6Al4V surfaces demonstrated significant differences in
Background. The main reasons for hip prosthesis failure are aseptic loosening and periprosthetic joint infection (PJI). The real frequency of PJI is probably largely underestimated because of non-standardized definition criteria, diagnostic procedure, treatment algorithm and other confounders. Therefore, data from joint registries are not reflecting the frequency of PJI and can be misleading; particularly low-grade PJI can be frequently misdiagnosed as aseptic failure. Therefore, prospective clinical studies with standardized protocol, comprehensive diagnostic procedure and sufficient follow-up should be performed. Sonication of explanted prosthesis is highly sensitive for detection of biofilms on prosthetic surface and allows quantitative analysis of biofilm formation. We hypothesize that by using sonication, ceramic components (BIOLOX®delta, BIOLOX®forte) will show higher resistance against biofilm adhesion compared to polyethylene (PE) and metal (CoCrMo). Methods. In this prospective multicentre study (level of evidence: Ia), we included all consecutive adults ≥18 years of age, who underwent explantation of the hip prosthesis for infection or aseptic reason. Excluded were patients in whom part of the prosthetic components were retained. A standardized and comprehensive diagnostic algorithm was applied, including sonication of all removed prosthetic components for qualitative and quantitative microbiological analysis (ultrasound bath 40 kHz, 1 W/cm2, 1 min). Individual components (metal, PE, ceramic) were separately placed in sterile boxes for investigation. All patients were simultaneously included in the European Prosthetic joint infection cohort (EPJIC, . www.epjic.org. ) to ensure long-term follow-up. Results. Up to date, 79 patients were included, of whom 47 (60%) were diagnosed with aseptic failure and 32 (40%) with PJI. Mean age was 73 years (27–87 years), 32 (41%) were males. Table 1 summarizes the demographic characteristics. In 32 patients with PJI, most frequently isolated organisms were coagulase-negative staphylococci (n=12, 38%), Staphylococcus aureus (n=7, 22%) and Propionibacterium acnes (n=4, 13%), followed by enterococci (n=2; 6%) and gram-negative bacilli (n=2; 6%); 2 infections (6%) were polymicrobial and 3 were culture-negative (9%). Table 2 summarizes the microbiological results from sonication of removed components. Causative microorganism could be detected in sonication fluid from polyethylene in 100%, from metal in 92% and from ceramic in 69%. Significantly lower bacterial counts expressed as colony-forming units (CFU) were detected in sonication fluid from ceramic components (230 CFU/ml) than from PE (6’250 CFU/ml) and metal components (5’870 CFU / ml) (p < 0.01). Conclusions. These first results support the hypothesis that significantly less biofilm biomass is formed on ceramic surface, compared to PE and metal surfaces, potentially indicating higher ceramic “resistance” against
INTRODUCTION. Biomaterial-related infections are an important complication in orthopaedic surgery [1], and Staphylococcus sp. accounts for more than half of the prosthetic joint infection cases [2]. Adhesion of bacteria to biomaterial surfaces is a key step in pathogenesis of such infections [3]. Titanium alloys are widely used in orthopaedic implants because their biocompatibility [4]. Surface incorporation of ions with antimicrobial properties, like fluorine, is one strategy previously studied with good results [5]. MATERIAL AND METHODS. A 18mm diameter rod of Ti–6Al–4V alloy ELI grade according to the standard ASTMF136-02 supplied by SURGIVAL was cut into 2 mm thick disk specimens, ground through successive grades of SiC paper to 1200 grade, degreased with a conventional detergent and rinsed in tap water followed by deionised water. The specimens were then chemically polished (CP). The disks were anodized only on one side by using a two electrode cell in a suitable electrolyte. TiO. 2. barrier layers, without fluoride (BL), were produced by anodizing in 1 M H. 2. SO. 4. at 15 mA cm-2 to 90 V, reaching 200 nm of thickness. Fluoride barrier layers (FBL) were produced in an electrolyte containing 1 M NH. 4. H. 2. PO. 4. and 0.15 M NH. 4. F, at constant voltage controlled at 20 V for 120 min at 20°C; the thickness of the layer is 140 nm. Laboratory biofilm-forming strains of Staphylococcus aureus 15981 [6] and Staphylococcus epidermidis ATCC 35984 were used in adherence studies, which were performed using the protocol by Kinnari et al [7]. Photographs obtained were studied by ImageJ software. Statistical analysis was performed by EPI-INFO software. The experiments were performed in triplicates. RESULTS. Lower adherence was detected when compared FBL with unmodified controls (CP and BL). A statistical significant difference (p<0.01) was detected in the adhesion to modified material between both species, being the adherence of S. aureus lower than that of S. epidermidis (Figure 1). DISCUSSION & CONCLUSIONS. There is currently a discussion about the actual antibacterial properties of fluorine when incorporated in biomaterial surfaces. In this study we have demonstrated that both S. aureus and S. epidermidis strains showed a decrease of
The number of arthroplasties being undertaken
is expected to grow year on year, and periprosthetic joint infections will
be an increasing socioeconomic burden. The challenge to prevent
and eradicate these infections has resulted in the emergence of
several new strategies, which are discussed in this review. Cite this article:
Implant-associated infection is a major source
of morbidity in orthopaedic surgery. There has been extensive research
into the development of materials that prevent biofilm formation,
and hence, reduce the risk of infection. Silver nanoparticle technology
is receiving much interest in the field of orthopaedics for its
antimicrobial properties, and the results of studies to date are
encouraging. Antimicrobial effects have been seen when silver nanoparticles are
used in trauma implants, tumour prostheses, bone cement, and also
when combined with hydroxyapatite coatings. Although there are promising
results with Cite this article: